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1

Convex analysis

1.1 Functional analysis

Let V be a (real) Banach space and V' the dual space. We denote by | |y the V' -
norm and (-, -) the duality bracket between V" and V'

Voe V' VeV {p,x) = p(x) .

Any set which is closed for the weak (sequential) topology is closed for the strong
one : indeed, if C' is weakly closed, any strongly convergent sequence of C' is also
weakly convergent and its limit belongs to C. The converse is false. However it is
true for the convex sets.

Theorem 1.1.1 Let C be a convex subset of a Banach space V.. Then C' is (sequen-
tially) weakly closed if and only if it is (sequentially) strongly closed.

This is a consequence of the Hahn-Banach theorem 1.4.1.
Let us specify now the notion of continuity of a functional J from a Banach space
V to R u {+w0}. We recall that a function is continuous at x € V for the sequential
strong topology if

YV, — x  (strongly) J(z,) — J(z).
A functional J from V to R u {+o0} will be continuous at = € V for the weak
sequential topology if

Vo, —x  (weakly) J(z,)— J(x) .

A continuous function for the sequential weak convergence is also continuous for the
strong sequential convergence because that strong convergence of a sequence implies
its weak convergence. More exactly, if J is weakly continuous at z, for any sequence
2, which converges strongly towards x we have:

T, > = x, — v = J(z,) - J(z),

and the function J is continuous for the strong sequential topology.

The converse is false in the general case. We will see that it is true, under certain
conditions, in the case of linear operators. It is “ partly” true for convex functions.
Specify what means to “partly”, defining the semi-continuity concept:
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Definition 1.1.1 A function J from V to Ru {+w0} is lower semi-continuous (Isc)
on V' if one of the two equivalent conditions is satisfied:

o YaeR, {ueV | Ju)<a} is closed
o YuelV, liminf J(u) = J(u).

u—u

Theorem 1.1.2 Any convex function Isc for the strong topology of V is lsc for the
weak topology as well.

In practice this result is used in the form of the following corollary:

Corollary 1.1.1 Let J be a convex functional from V to Ru {+w} Isc (for example
continuous) for the strong topology. If v, is a weakly convergent sequence to v € V
then

J(v) < liminf J(v,,).

n——+0o0

We find that if x,, — = weakly in V' then

|z||y < liminf |z, |v ;
n—+0oo

indeed z — ||z||y is a continuous convex application. So it is strongly lsc and thus
weakly lsc.
We now present a topology on V’ which is called the weak-star (sequential) topol-

ogy.
Definition 1.1.2 Let (¢,)nen be a sequence of V'. We say that () converges to-
wards ¢ for the weak-star topology and we note @, — ¢ if

VeeV {pn, ) = {p,x) .

Be careful that the weak-star topology is not the weak topology of the dual
space V'. It is true only if V' = V” (up to an isomorphism) that is if V' is a reflezive
Banach space.

Theorem 1.1.3 Let (¢,) be sequence of V'. Then

1. if p, = @ for the weak-star topology, then ||y is bounded and
ol < minf i, v

2. if = o for the weak-star topology and if x,, — = strongly in V', then {¢n, 1, —
(p,z) .
1.1.1 Compactness theorem

We give now one of the most important compactness result of functional analysis,
which motivates the introduction of the weak-star topology.
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Theorem 1.1.4 (Banach-Alaoglu-Bourbaki) Let V' be a real normed space. The
close unit ball of V'
Byr={peV'[|ely <1},

18 weakly star compact.
In other words, from any bounded sequence in V', one can extract a sub-sequence
converging for the weak * topology.

When V is a reflexive space, V is identified to its bidual VV” and the weak and
weak * topologies coincide. Theorem 1.1.4 holds with V' instead of V’. In fact, we
even have a stronger result since it is reflexive spaces characterization.

Theorem 1.1.5 (Kakutani) Let V' be a Banach space. Then V is reflexive if and
only if the unit closed ball of V

By={aeV||aly <1},

18 weakly compact, that is from any bounded sequence in V', one can extract a sub-
sequence converging for the weak topology.

An immediate corollary is:

Corollary 1.1.2 Let V' be a Banach space. then V is reflexive if and only if V' is
reflezive.

1.2 Gateaux-differentiability of convex functionals

Now let differentiability properties useful in the context of optimization in a Banach
space.

Definition 1.2.1 Let J a functional from'V to Ru{+owo}. We say that J is Gateauz-
differentiable at w e dom (J) if the directional derivative

J'(u:0) = Tim J(u+ tv) — J(u)

t—0+t t ’
exits for any direction v of V and if
v J (u;v)

is linear continuous. Here dom (J) is the set of uw € Xsuch that J(u) is finite.

We shall denote VJ(u) the Gateaux-derivative of J at u. It belongs to the dual V.
If V is an Hilbert space, then with Riesz theorem (see [3]) one may identify V' and
its dual space; we have then

J'(w;0) = (VJ(u),0),



4 1 Convex analysis

where (+,-) is the inner product of V. The element V.J(u) € V is the gradient of J
at u.

It is clear that if J is differentiable in the classical sense (say Fréchet - differ-
entiable) at u, then J is Gateaux-differentiable at u and the classical and Gateaux
derivatives coincide.

Theorem 1.2.1 Let be J : C <V — R, Gateaux differentiable on C, with C convex.
J is convex if and only if

V(u,v)eC xC J(v) = J(u) +(VJ(u),v —u) (1.1)

Theorem 1.2.2 Let be J : C < V — R, Gateauzx differentiable on C, with C convez.
J 1s convex if and only if VJ is a monotone operator, that is

V(u,v)eC xC (VJ(u) —VJ(w),u—wv) = 0. (1.2)
Remark 1.2.1 Assume that V is a strictly monotone operator
V(u,v) €C xC, u+# v, (VJ(u) = VJ(v),u—v) > 0. (1.3)
then J is strictly convez.

Similarly, we define the (Gateaux) second derivative of J at u, as the derivative
of the (vectorial) function u — V.J(u). We denote D?J(u) and called it Hessian by
analogy with the Hessian in the sense of Fréchet; this Hessian is identifiable to a
n x n square matrix when ¥V = R".

1.3 Minimization in a reflexive Banach space

Unless otherwise stated, we now assume that V' is a reflexive Banach space with
(topological) dual V.

Let us begin with a general minimization result of a semi-continuous functional on
a closed set of V.

Definition 1.3.1 We say that J : V — R is coercive if

lim J(x)= +o0.
|2y —+o0
Theorem 1.3.1 Assume that V is a reflexive Banach space. Let J be a functional
fromV to Ru {+0o0}, lower semi-continuous for the weak topology of V.. Let K be a
non empty weakly closed subset of V. Assume that J is proper (there exists v, € K
such that J(v,) < +0). Then the following minimization problem

Find u such that
@ |

J(u)=inf { J(v) |[veK }, (1.4)

has at least a solution if one of the following conditions is verified :
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e cither J is coercive i.e. lim J(v) = +o0,
lvlly—+o0

o or K is bounded.

An important corollary concerns the convex case.

Corollary 1.3.1 Assume V s a reflexive Banach space. Let J be a functional from
V to R U {+w}, proper, conver and lower semi-continuous and K be a non empty
closed convex subset of V.. If J s coercive or K s bounded, then the minimization
problem has at least a solution. Moreover, if J is strictly convex the solution is
unique.

We end with first order optimality conditions.

Theorem 1.3.2 Let K be non empty conver subset of V and J a functional from
K to R Gateauz-differentiable on K. Let be u € K a solution to problem (P). Then

Yve K, <VJ(u),v—u>=0. (1.5)

1.4 Convex and non smooth analysis

1.4.1 Hahn -Banach Theorem

In what follows X is a real Banach space with dual X’ (not necessarily reflexive).
We note (-, -) the duality product between X and X"

Voe X!'\VeeX  {(p,z)=p(z).

The geometrical form of Hahn-Banach theorem separates convex sets. It is very
important in convex analysis and is used in particular to exhibit lagrange multipliers
in optimization. We recall here the geometrical forms of this theorem (which is the
only useful in our case) and significant corollaries as well. For demonstrations and
more details we refer to [3].

Definition 1.4.1 (Affine hyperplane ) An affine closed hyperplane is defined as
H-{zeXx | {aa)+B-0}
where o € X' is non zero and 5 € R.

When X is an Hilbert space V' (in particular if V' = R™), then V' ~ V' and any
affine closed hyperplane takes the form

H={zeV |(a,x)+ =0},

where (-, -) is the inner product V, a € V, o # 0 and 3 € R.
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Definition 1.4.2 (Separation) Let A and B be two non empty subsets of X. The
affine hyperplane H {«,z) + = 0, separates A and B if

VeeA {(a,z)+ <0 and VyeB {(a,yy+5=0.
H strictly separates A and B if there exists € > 0 such that

Vie A {(a,z)+ < —e and YyeB {a,y)+fp=c.
We may now give the first geometrical form of Hahn-Banach theorem:

Theorem 1.4.1 Let A and B be two non empty convexr subsets of X such that
An B = . Assume A is open. Then, there exists an affine closed hyperplane
which separates A and B.

Corollary 1.4.1 Let C' be a non empty closed convex subset of R" and z* € C.
Then z* € Int (C) if and only if there is no linear form that separates z* and C.

The second geometrical form of Hahn-Banach theorem writes :

Theorem 1.4.2 Let A and B be two non empty, conver, subsets of X such that
An B = §.Assume that A is closed and B is compact. Then, there exists an
affine closed hyperplane which strictly separates A and B.

1.4.2 Subdifferential

Definition 1.4.3 Let be f: X - Ru {+w} andue dom f (i.e. f(u) < +0). The
subdifferential of f at u is the set 0f(u) (possibly empty) of elements u* € X’ such
that

Yoe X f) = fu) + (u*,v—u).
These elements u* are the subgradients.

Remark 1.4.1 1. f: X — R U {+00} achieves its minimum at u € dom f if and
only if
0edf(u).

2.if f,g: X > Ru{+o} and u € dom frn dom g, we get

Of (u) + dg(u) = A(f + g)(u).

3. As
of(uw) = [J{ur e X' | (u,v—u) < f(v) = f(u) },

veX

then 0f(u) is convex, weak * closed set.

4. for every A > 0 we get O\ f)(u) = Aof(u).
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Theorem 1.4.3 (Link with Gateaux-differentiability) Let be f : X — R u
{+0} conver.
If f is Gateaux-differentiable at w € dom f, it is subdifferentiable and 0f(u) =

{f'(u)}-
Conversely, if f is finite, continuous at u and has only one subgradient, then f is
Gateauz-differentiable at u and 0f (u) = {f'(u)}.

Theorem 1.4.4 (Subdifferential of a sum) Let f and g conver, lower semi-
continuous with values in R U {+w0}. Assume there exists u, edom fn dom g such
that f is continuous at u,. Then

Vue X o(f +g)(u) =0f(u) + dg(u).

We end with a chain rule result

Theorem 1.4.5 Let A be a linear continuous operator from V to W (Banach
spaces). Let f be convex, lower semi-continuous from W dans R u {4+0} contin-
uous at (at most) a point of its (non empty) domain. Then

VueV  (f o A)(u) = A*Of(Au),

where A* is the adjoint operator of A.

Details on these notions can be found [2, 5].
We conclude with an important example.

1.4.3 Application to a set indicator
When f is the indicator function of a non empty subset K of X"

0 ifuek,
+o0 else

Flu) < 1) = { (1.6)

the subdifferential of f at w is called the normal cone of K at w:
Olg(u) = Ng(u) ={ v e X | (u*,v—u) <0 forevery ve K }.

When X is an Hilbert space (identified to its dual,) and K is a non empty, convex
closed subset of X', we may describe the subdifferential of 1 at u (that is the normal
cone to K at u ):

Proposition 1.4.1 Let be u € K, where K is a non empty, convex closed subset of
X (Hilbert space). Then for any ¢ > 0,

A€ 01k (u) <:>)\=c[u+%—PK(u+%)]

where Pg is the projection of X onto the convex set K.
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Proof. We first note that dlx(u) is a subset of X. We recall that if Px is the
projection of X onto the closed, convex set K, the image Py (w) of any w € X is
characterized by

Yoe K (w— Pg(w),v — Pg(w)), <0,
where (-, )y is the inner product of X. Let be A € 01k (u): A is characterized by
Vvoe K (Av—u), <0

that is, for any ¢ > 0

C

Vve K (u—ké—u,v—u) < 0.
X

Setting w = u + — we get
c

)\6511((16)<=>UZPK(U+%)<=>)\=c[u+%—PK(u+%)].

1.4.4 Legendre-Fenchel transformation

Definition 1.4.4 Let be f: X — R U {+o0}. The Legendre-Fenchel transformed or
conjugate function of f is f*: X' — R defined as

Vle X' F5(0) = sup{ L(u) — f(u) }. (1.7)
ueX
Remark 1.4.2 (a) if f “takes ” the value —oo, then f* = +oo. If f is proper (that
is non identically equal to +00) then f* takes its values in R U {400}.
(a) We shall note {(u) =< l,u >, where < -,- >is the duality product between X
and X'. Equation (1.7) reads

Vute X' ff(u*) = sup{ (u* u) — f(u) }.
ueX
Definition 1.4.5 Let A < X be a non empty set. The support function of A is
o4: X —> RuU{+w0} defined by o4 = (14)*

Example 1.4.1 Let A be a set and f(x) = d(x, A). Then f* = o4 + 1gx where B
is the unit ball of X'.
If f:u— |u|x (where | -|x is the norm of X ), then f* = 1px

Proposition 1.4.2 For every function f : X — R u {+o}, the function f* is
convex and lower semi-continuous for the weak * topology.
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Proof. The definition gives
fr= sup @y,

uedom f

where dom f is the domain of f ( i.e. the set of u € X'such that f(u) is finite) and
0y : X' — R is defined by

0y (u*) =< u*,u > —f(u).

Every function ¢, is affine and continuous, so convex and lower semi-continuous for
the weak * topology of X’. It is the same for the supremum.

]
More generally

Proposition 1.4.3 Let f be a positively homogeneous (proper) function from X to
R U {40}, that is such that

VieR,VxeX fQz) =|A[f(x) .
Then the conjugate f* is the indicator function of a closed, convex subset K of X'.

Proof. Let f be a positively homogeneous (proper) function from X to R u {+o0}.
Let be u* € X’. Two cases occur:
e Ju, € X such that (u*, u,) — f(u,) > 0. Then, by homogeneity, for every A > 0

W*, o) — f(Auo) = A[Cu®, wo) — f(uo)] < f*(u¥).

Passing to the limit as A\ — 400 we get f*(u*) = +o0.
e On the contrary
Vue X ¥ uy — f(u) <0,

and f*(u*) < 0. The definition of f* yields
W*,0) = f(0) < f*(u*) ;

as f is a positively homogeneous f(0) = f(n-0) = nf(0) for every n € N and
f(0) = 0. We eventually obtain f*(u*) = 0.

Set K = {u* € X* | f*(u*) = 0 }. We just proved that f* = 1x. As f* is convex
and lower semi-continuous, K is convex and closed. O

We now give a result between f + ¢ and f* + ¢* which is the basis for the theory
of duality in convex analysis:

Theorem 1.4.6 Let f,g : X — R u {+w0} be convex functions such that, there
exists u, € dom g with f continuous at u,. Then

inf (f(u) + glu)) = ma (~*(u") — g*(~u")).

u¥*eX’
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Proof. Set

a = inf (f(u) +g(u)) and § = sup (—f*(u*) — g"(—u")).

ueX ukeX’
Let be u € X and u* € X’: with the definition we get
—f*(u*) < — <u*,u>+f(u) and — g*(—u*) << u*,u > +g(u),

SO
—f*(W®) = g (—u®) < flu) + g(u) ;
passing to the sup in the left hand side and to the inf in the right hand side, we get

B < a.

Let us show the converse inequality. As u, € dom fn dom g, a € R u {—w}.
If a = —o0, the theorem is proved and we may assume that o € R. Let be

C=int({(u,t) e X xR | f(u)<t}),

and
D={(u,t) e X xR | t<a—gu)}) #d.

As f and g are convex, C' and D are convex. As f is continuous at u,, C' is non
empty. Moreover C' n D = . We may apply Hahn-Banach theorem: there exists
(uk,s,) € X' x R\{0,0} and ¢ € R such that

V(v,s) e D <up,v>+8s, = ¢,

and
V(w,0) e C  c=<ul,w> +0s,. (1.8)

As o may go to +oo with the definition of C, we get s, < 0.
Assume that s, # 0. In that case, s, < 0 and (up to a division by |s,|) we may
assume that s, = —1. We obtain

V(v,s) e D —<ulv>+s< —c
Let u e X and s = a — g(u): the couple (u, s) belongs to D. So
Vue X —<ulu>+a—g(u) < —c
On the other hand, relation (1.8) may be extended to C' and, by convexity
C—{(ut)e X xR| flu)<t};

we may apply it to (u, f(u) for every u € X which gives
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c=<ulu>—f(u).

Finally,
So

which ends the proof.

Case where s, = 0: as f is continuous at u, one may find a ball B(u,, R) with
R > 0 included in dom f. Then (u,,a — g(u,)) € D and for every w € B(u,, R),
(U + w, f(u,) + €,) € C: this gives

< Uy Uy W >K ¢ <K< U, Uy >
This implies that «} = 0 and a contradiction since (u*,s,) # (0,0). O

Remark 1.4.3 Note that in the theorem the right hand term “sup” is always
achieved (it is a mazimum) which is not the case in the left hand term where the
infimum is not necessarily achieved.

Corollary 1.4.2 Let f : X — R u {+0} be convex continuous at v e X. Then

F) = mas (<0 u > —f*(u*))

Proof. Set g = 1y,3. We get g*(u*) =< u*,u > for every u* € X’. Functions f and
g are convex and f is continuous at u edom g. The previous theorem gives
f(u) = inf (f + g)(u)
ueX

= max (—f*(u*) — ¢"(=u")) = max (< v’ u>—f*(u")).

]

This result can be generalized to convex lower semi-continuous functions

Theorem 1.4.7 Let f : X — R u {400} be convex and lower semi-continuous.
Then, for every ue X

Proof. See [2] p. 89. ]

We end with a biduality result which a corollary of the previous theorem if X is
reflexive. This result still holds true even if X" is not reflexive.

Theorem 1.4.8 Let f be a proper, convex and lower semi-continuous function from
X to R U {+w}. Then f** = f.
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1.4.5 Link with the subdifferential
Theorem 1.4.9 Let be f: X — R u {+w0} and f* the conjugate function. Then
u* € df(u) = f(u) + f*(u*) = (u*,u).

Proof. Let u* € 0f(u):

So

) = (W u) = f(u) = sup{(u®, 0) — f(v) [ ve X} =[5 ("),
We get :f(u) + f*(u*) = (u*,u).
Conversely, if f(u) + f*(u*) = (u*,u) we get, for every v e X

— fu) = f*(u®) = (u*,v) = f(v),
(', v —u) < f(v) = flu),
that is u* € df(u). ]

Corollary 1.4.3 If f : X — Ru{+m} is convex, proper and lower semi-continuous,
then
u* € df(u) = uedf(u").

Proof. 1t suffices to use the previous theorem to f* and use that if f is convex,
proper and lsc then f = f**. O
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The space of functions with bounded variation

2.1 Sobolev spaces

For more details, one may refer to [4]. Let {2 be a bounded open subset of R", (n < 3
in practical cases) with regular boundary I'. We call D({?2) the space of functions
C® with compact support in 2. The dual space D’'({2) is the space of distributions
on 2.

ou
For any distribution u € D'({2), the derivative 5
L

ou def
Vi € D(12) <—,¢> = —< >
0x; D/(2),D(12) ' O, D/(2),D(2

We denote the derivative of u in the sense of distributions D;u =

is defined (by duality) as

@U.

6932-

if @ e N", we note D = 0{"u---0%"u and |a| = a1 + - - + a,; we get

VoeD(2) (D" )pig)p) = (1) Cu, D*0)prio) i) -
Definition 2.1.1 We define the Sobolev spaces W™P(§2) as following:
W™P(Q2)={ue LP(Q2)| Due LP(2), |a| <m }
H™Q2)=W™*(){ ueD'(2) | D*ue L*(2), |a|<m } .
Remark 2.1.1 H°(2) = L*(02).

We will enunciate a series of properties of Sobolev spaces without proofs. We can
see [4] for example.

Proposition 2.1.1 H™({2) endowed with the scalar product
(u, 0)m J D%u(x) D%(z) dx
\oa|<m

15 an Hilbert space.
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Proposition 2.1.2
H™(2) c H™ ()

and the injection is continuous, for m = m’.

Definition 2.1.2
Hol((Z) ={ ueHl(Q) | ur =0 }.

It is also the closure of D(£2) in H'(£2).
m 1 aju -
H'"2)={uweH ()| — =0,7=1,---,m—1},

onJ|r

0
where ™ 15 the derivative of u along the exterior normal to the boundary I':
n

Z—U = 2 Cu cos(n, €;) ,
n :

where n is the exterior normal vector to I and (2 is smooth enough (I" is C* for
example).
Definition 2.1.3 For every m € N, we note H=™({2) the dual space of H]'(S2).

Theorem 2.1.1 (Rellich) If 2 is a bounded open subset of R", then for every
m € N, the embedding of H™ ' (£2) in H™(§2) is compact.

In particular the embedding of H!(§2) in L*(§2) is compact.
Practically, this means that any bounded sequence for the H:(§2) norm, weakly con-
verges in HX($2) (up to a subsequence) and strongly in L?(2).

2.2 The space of functions of bounded variation BV ({2)

2.2.1 Definition

In the sequel {2 is a bounded open subset of R? with Lipschitz boundary and
Cl(£2,R?) is the space of C' functions with compact support in {2 with values in
R2.

Definition 2.2.1 A function f € L' () (with values in R ) is with bounded variation
in 2 if &(f) < +o0 where

0(f) = s | @) divota) i | e CL@B Tele<1 | @)

We denote
BV(Q2) ={feL'(2) | &(f) < +x}

the space of such functions.
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Remark 2.2.1 Recall that if p = (1, p2) € CL(£2,R?) then

) 0 0
Vo= o) 0 div (o) = o)+ S20).
1 2

So, integrating by parts

where - is the scalar product of R? : x -y = x1y1 + Toys .

Definition 2.2.2 (Perimeter) A set measurable E ( for the Lebesgue measure )
of R? is of finite perimeter (or length) if its characteristic function xg (xg = 1 on
E and 0 elsewhere) belongs to BV (12).

Recall that a Radon measure is a measure finite on any compact set and with the
Riesz theorem, any linear continuous form £ on C2({2) (continuous functions with
compact support) may be written as

£(f) = L Fo) due |

where g is the (unique) Radon measure associated to £. More precisely

Theorem 2.2.1 ([9] p. 126, [6] p. 49 ) For every linear bounded form L on C2(2,R?),
that s

VK compact subset of 2, sup{L(p) | ¢ € CI(2,R?), |l¢l|e <1, supppc K } < 40,

there corresponds a unique positive Radon measure p on {2 and a function p-
measurable o (“ sign” function) such that
(i) |lo(z)| =1, p a. e , and

(i1) L(p) = f o(z)o(z)du for every function p € C2(£2,R?) .
(7ii) Moreover  is the variation measure and verifies

p(2) =sup{ L() | pe CALR?) , oo <1, suppp = 2} . (2.2)

We may give a structural property of BV ({2) functions.
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Theorem 2.2.2 Let be f € BV ({2). There exists a positive Radon measure p on {2
and a function p-measurable o : {2 — R such that
(i) |lo(z)| =1, p a. e , and

(i1) JQ f(z) div p(x)de = — fg o(z) o(x)du for every function @ € C1(£2,R?).

Relation (ii) is a weak integration by parts formula. This theorem shows that the
weak derivative (in the sense of distributions) of a BV(f2) function is a Radon
measure.

Proof - Let be f € BV (£2) and consider the linear form £ defined on C}(£2, R?) by

£(g) = f f(@)div ple) do .

As fe BV(£2),
Cri=sup{L(p) | p € C(2,R?), [pfo <1} < +o0
for every function ¢ € C}(£2,R?), so that
Ve CHORY)  Lg) < Celigln (23)

Let K be a compact subset of 2. For every function ¢ € C2(£2, R?) with compact
support in K, one may find (by density) a sequence of functions ¢, € C!(£2,R?)
uniformly convergent to ¢. Let us set

L(p) = lim L{p) .

k—+400

With (2.3) the limit exists and does not depend on the sequence (). One may
extend £ by density to a linear form £ on C2(£2, R?) such that

sup {L(p) | ¢ € C2(2,R?) | || <1, suppp < K } < +o0 .

We conclude with the Riesz theorem. ]
With (2.2), &(u) = pu(£2) = 0: it is the total variation of f. The application

BV () - R*
u— ulpye) = |lull + P(u) .

is a norm. We endow the space BV ({2) with this norm.
Example 2.2.1 Assume that
fewtl(Q)={feL(2)| DfeL'(2) },

where D f is the derivative of f (in the sense of distributions). Let p € C1(£2,R?) be
such that ||l < 1. Then
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ffdiwdw=—f Df-sodm\sooof Df|dz < | DSl <+ .
(93 N (9)

Therefore f € BV ({2). Moreover

2(7) = sup(= | DS o | Igle <1} = DSl
1)

and D
o ’Df‘ifo#O,

0 else.

So WhHL(2) < BV (£2). In particular, as §2 is bounded

Vi<p< 4o WW(Q)< BV(2).

17

Remark 2.2.2 With Radon-Nikodym theorem that describes measures decomposi-
tion, then for every function u € BV ({2), the following decomposition of Du holds:

Du = Vudzx + D’u ,

where Vudx is the absolutely continuous part of Du with respect to the Lebesgue

measure and D*u is the singular part.

2.2.2 Approximation and compactness

Theorem 2.2.3 (Lower semi-continuity of the total variation ) The appli-

cation u — ®P(u) from BV (§2) to R is lower semi-continuous for the sequential

topology of L'(£2).

More precisely, if (ux) is a sequence of functions in BV ({2) that converges to u

strongly in L'($2) then
D(u) < 1?1227“5(“’“) :
Proof - Let ¢ € C1(£2,R?) be such that ||, < 1. Then
J u(z)div o(z)dr = lim | ug(z)div o(z)dz .
Q

k—+00 0

So, for every € > 0, there exists k[, €] such that for every k = k[p, <] :

L (@) div p(z) do — ¢ < f

2 2

JQ u(x) div ¢(x) de < P(uy,)

up(z) div p(x) dr < J u(z) div o(z)dr + € .
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it comes

Vk = k[p, €] f w(z)div p(z)de —e < P(uy) ,

and therefore

J u(z) div p(z) dr < liminf & (uy,) .
o

k—+00

As it true for every ¢, we obtain

@(u) < liminf &(uy) .

k—+00

]
We admit the following result

Theorem 2.2.4 (Approximation) For every function u € BV (§2), there exists a
sequence of functions (uy)ren of BV (£2) 0 C*(§2) such that

(i) ur, — u in L*(2) and

(i1) P(ug) — P(u) (in R).

The proof use a classical regularization process (by convolution). On can refer to [6]
p-172.

The previous result is not a density result of BV (§2) n C*({2) in BV ({2) since we
do not have @(u; — u) — 0 but only ¢(u;) — @(u).

Theorem 2.2.5 The space BV ({2) endowed with the norm
u = ful pvio) = [ufzr + $(u)
1s a Banach space.

Proof - Let (uy)nen be a Cauchy sequence of BV (£2). It is also a Cauchy sequence
in L'(£2): so it converges to some u € L'(£2). On the other hand, it is bounded in
BV (£2) (as a Cauchy sequence), so

M > 0,Yn D(u,) < M .
With theorem 2.2.3,
&(u) < liminf @(u,) < M < +o0o .

n—0o0
This implies that u e BV ({2). Let be € > 0 and N such that
Vn,k > N |t — ur| By <€ .

So
Vn, k= N D(uy, —ug) < e

and with the lower semi-continuity of @ (fixing n) we get
Vn >N b(u, —u) < liin inf @(u,, —ug) <e .
—00

This proves @(u, —u) — 0. O
We end with a compactness result that we will admit
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Theorem 2.2.6 (compactness ) The space BV (£2) is compactly embedded in L*(12).
More precisely, if (Un)nen s a bounded sequence in BV (S2)

sup |u,| gy (o) <+,
neN

then , there ezists a subsequence (U, Jken and a function u € BV (§2) such that u,,
strongly converges to u in L'($2).

Proof - [6] p.176. O
More generally we have Sobolev type injections :

Theorem 2.2.7 (Embedding in L? spaces ) Assume {2 is a smooth open subset

of RN, then

: . _ N
o The space BV (§2) is continuously embedded in LP(§2) for 1 < p < N1
e The space BV (£2) is compactly embedded in LP(£2) for 1 <p < N1

In particular, for N = 2 the space BV (§2) is continuously embedded in L?({2).
For details on the functions with bounded variation, reference may be made to [6].

2.3 Variational method

Variational methods proposed to minimize noise while adding a priori on the desired
image. We will clarify this idea: we work now in a continuous (infinite-dimensional)
framework, and then we will make a discretization. Given an original image uy we
assume it has been degraded by additive noise w, and possibly by a blur operator R.
From the observed image uy = Rug + v (which is a degraded version of the original
image ug), we attempt to reconstruct wugy. If we assume that the additive noise w
is Gaussian, the method of maximum likehood leads to seek ug as the solution of
minimization problem
inf u, — Rul3

where | - |5 denotes the norm in L?*({2). This is an ill-posed inverse problem : the
operator is not necessarily invertible (and even when invertible, its inverse is often
difficult numerically to compute). In other words, the existence and /or uniqueness
of solutions is not ensured and even if this is the case, the solution may not be stable
(that is continuous with respect to the data). To solve it numerically, we introduce
a regularization term (prior on the image), and consider the problem

inf |ug — Rul5+  L(u)
U N ——/ N—

data fitting Regularization
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2.3.1 The continuous model of Rudin-Osher-Fatemi

We will first motivate the model that follows. In the discrete part, it consists of
replacing the square of the norm of the gradient of the standard image by (1 to the
power). The continuous model presented in next subsection is the rigorous mathe-
matical formalization of the change in the standard regularization term.

Recall that we wish to suppress noise while preserving the edges of the image
that is to say the discontinuity set of the function describing the image. Let us
consider the one-dimensional case, for example by taking a section of the image
below.

Fig. 2.1. Original image and smoothed image

White/black outline corresponds to the discontinuity in the original image. In the
smoothed image the discontinuity is regulated by an affine function. The gradient
of the image is the quantity describing the contours, the choice of the regularization
term is done by taking a primitive. Then we see that the standard (1D absolute
value) is preferable to the choice of the norm squared (in the 1D function z — z?).
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(a) Discontinuity (b) Affine regularizing function

(c) Primitive: |z (d) Primitive: z2

Fig. 2.2. Regularization ||z| versus|z|?

An alternative to the H' -Tychonov regularization (which is too violent) is to
replace the regularization term |Vu|3 by a less restrictive regularizing term. Rudin,
Osher and Fatemi [7] proposed a model where the image is decomposed into two
parts: ug = u + w where w is the noise and the u part is reqular. We will therefore
seek the solution of the problem in the form u +w with v € BV (£2) and w € L*(§2).
This leads to :

1
(Pror) m{ Sl +ed(u) | we BV(Q), we I3(9), utw=u } .

Here the regularization term is the total variation of w : ®(u) and ¢ > 0. If the
function u belongs to

W) ={ue L) | Vue L'(12) }(c BV(R2)),
the total variation is @(u) = |Vu|,. Here | - |, stands for the usual norm in LP({2).

Theorem 2.3.1 Problem (Pror)has a unique solution.
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Proof. Let (u,,w,) € BV (£2) x L*(§2) be a minimizing sequence. As w,, is bounded
in L?(£2) one may extract a subsequence weakly convergent to w* in L%(§2). As the
L?(£2) norm is convex and lower semi-continuous, we get

™3 < lim inf [w, 5.
n——+0o0

Similarly u, = ug4 — w, is bounded in L?*({2) and thus in L'(2) since {2 is bounded.
As @(u,) is bounded, this yields that u, is bounded in BV ({2). With the compact
embedding of BV (£2) in L'(£2) (Theorem 2.2.6), we obtain that u, converges (up
to a subsequence) strongly in L'(£2) to u* € BV (£2).
Moreover @ is lower semi-continuous (Theorem 2.2.3), so that

& (u*) < liminf @(uy,),

n—-+aoo

and
% - o 1 )
P(u*) + Q—SHM I3 < Lim inf & (u,) + 2—E||wnH§ = inf(Pror).

As u,, + w, = ug for every n, we have u* + w* = uy. Therefore u* is a solution to
problem (Pror).

As the functional is strictly convex with respect to (u,w) and the constraint is affine
we get uniqueness.

We will need to establish optimality conditions for optimal solutions of the pro-
posed models. However, @ is not Gateaux-differentiable and we have to use the
notions of non-smooth analysis.

2.3.2 First order optimality conditions

Problem (Pror) equivalently writes

1
i =@ —|lu — ual)3. 2.4
Jomin F(u) i=®(u) + oo fu = ual; (2:4)

The functional F is convex and u is solution to (Pror) if and only if 0 € 0F (u).
Relation: 0 € 0F(u) < u € 0F*(0), is true even if the space is not reflexive (see
Corollaryl.4.3 et/and/or [1] Theorem 9.5.1 p. 333). Here F* is the Fenchel conjugate
of F.

We use Theorem 1.4.4 to compute 0F(u). The application u — |lu — ug|3 is
continuous on L?(£2) and & is (convex) with values in R U {+00} and finite on
BV (£2). Furthermore, u — |u — ug|3 is Gateaux-differentiable on L?({2). As we are

going to use the convex duality we first compute the Legendre-Fenchel conjugate of
P.

Theorem 2.3.2 The Legendre-Fenchel conjugate @* of the total variation @ is the
indicator function of the closure (in L*(2)) of the set

Ki={{=dive|peC (2R, |olo<1}.
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Proof. Ad @ is positively homogeneous la conjugate @* of @ is the indicator function
of a closed, convex set K in the dual of BV (£2) (Proposition 1.4.3). As L*(£2) is con-
tinuously embedded in BV (£2) (Theorem 2.2.7), the dual of BV ({2) is continuously
embedded in L?(£2). Therefore K is closed in L?(12).
We first prove that K < K: Let u € K. By definition

P(u) = sup (€, u), (2.5)
Eek

where (-, -) is the inner product of L*(§2). Therefore, (¢,u)) — @(u) < 0 for every
¢ e K and u € L*(2) (Note that if u € L?(2)\BV (£2) then @(u) = +0o0 by definition
of BV (£2)). We deduce that, for every u* € K

O*(u*) = sup (v*,u) —P(u) = sup (u*,u)—d(u) <O0.
uelL?($2) ueBV (£2)

As ©@* has only one finite value we get & (u*) =0, and u* € K. Consequently I < K
and as K is closed: -

Kck.
In particular

®(u) = sup (u,§) < sup (u,§) < sup (u, &) = sup (u,&) — P*(&) = D™ (u).
§eK gek gek cek

As @** = @, we obtain

gek ¢ek ek

and
sup (u, §) = sup (u,§) = sup (u,§). (2.6)
§eK &K ¢ek

Assume there exists u* € K such that v* ¢ K. Then we may strictly separate u* and
the closed convex set K. There exists o € R and u, such that

(Uo, u™) > v = sup (uy, V) .
vek

With (2.6) we get

sup (uoaf) = (UO, U*) > = sup (UO, U) = sup (UO, U) :
¢ek velk vek

We have a contradiction: K = K. ]
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Then u is a solution de (Pgror) if and only if

U — Uq

1
0ed (@(u) + Z—EHUJ - ud|§) = + 0D(u).

As @ is convex, lower semi-continuous and proper we may apply corollary1.4.3. So
Ya— U o 0P(u) <= ue 6@*(w) = 0€—u+ 5525*(ud — v
€ € €

).

Finally, u is a solution de (Pror) if and only

0 —u+ olg(—d—"

),

that is
Ug — U

u € Ni( ),

where N% is the normal cone to K.
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