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Convex analysis

1.1 Functional analysis

Let V be a (real) Banach space and V 1 the dual space. We denote by } }V the V -
norm and x¨, ¨y the duality bracket between V and V 1:

@ϕ P V 1, @x P V xϕ, xy “ ϕpxq .

Any set which is closed for the weak (sequential) topology is closed for the strong
one : indeed, if C is weakly closed, any strongly convergent sequence of C is also
weakly convergent and its limit belongs to C. The converse is false. However it is
true for the convex sets.

Theorem 1.1.1 Let C be a convex subset of a Banach space V . Then C is (sequen-
tially) weakly closed if and only if it is (sequentially) strongly closed.

This is a consequence of the Hahn-Banach theorem 1.4.1.
Let us specify now the notion of continuity of a functional J from a Banach space
V to RY t`8u. We recall that a function is continuous at x P V for the sequential
strong topology if

@xn Ñ x (strongly) Jpxnq Ñ Jpxq .

A functional J from V to R Y t`8u will be continuous at x P V for the weak
sequential topology if

@xn á x (weakly) Jpxnq Ñ Jpxq .

A continuous function for the sequential weak convergence is also continuous for the
strong sequential convergence because that strong convergence of a sequence implies
its weak convergence. More exactly, if J is weakly continuous at x, for any sequence
xn which converges strongly towards x we have:

xn Ñ x ùñ xn á x ùñ Jpxnq Ñ Jpxq ,

and the function J is continuous for the strong sequential topology.
The converse is false in the general case. We will see that it is true, under certain

conditions, in the case of linear operators. It is “ partly” true for convex functions.
Specify what means to “partly”, defining the semi-continuity concept:
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Definition 1.1.1 A function J from V to RYt`8u is lower semi-continuous (lsc)
on V if one of the two equivalent conditions is satisfied:

• @a P R, t u P V | Jpuq ď a u is closed
• @ū P V, lim inf

uÑū
Jpuq ě Jpūq.

Theorem 1.1.2 Any convex function lsc for the strong topology of V is lsc for the
weak topology as well.

In practice this result is used in the form of the following corollary:

Corollary 1.1.1 Let J be a convex functional from V to RYt`8u lsc (for example
continuous) for the strong topology. If vn is a weakly convergent sequence to v P V
then

Jpvq ď lim inf
nÑ`8

Jpvnq.

We find that if xn á x weakly in V then

}x}V ď lim inf
nÑ`8

}xn}V ;

indeed x Ñ }x}V is a continuous convex application. So it is strongly lsc and thus
weakly lsc.

We now present a topology on V 1 which is called the weak-star (sequential) topol-
ogy.

Definition 1.1.2 Let pϕnqnPN be a sequence of V 1. We say that pϕnq converges to-

wards ϕ for the weak-star topology and we note ϕn
˚
á ϕ if

@x P V xϕn, xy Ñ xϕ, xy .

Be careful that the weak-star topology is not the weak topology of the dual
space V 1. It is true only if V “ V ” (up to an isomorphism) that is if V is a reflexive
Banach space.

Theorem 1.1.3 Let pϕnq be sequence of V 1. Then

1. if ϕn
˚
á ϕ for the weak-star topology, then }ϕn}V 1 is bounded and

}ϕ} ď lim inf
nÑ`8

}ϕn}V 1 .

2. if ϕn
˚
á ϕ for the weak-star topology and if xn Ñ x strongly in V , then xϕn, xny Ñ

xϕ, xy .

1.1.1 Compactness theorem

We give now one of the most important compactness result of functional analysis,
which motivates the introduction of the weak-star topology.
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Theorem 1.1.4 (Banach-Alaoglu-Bourbaki) Let V be a real normed space. The
close unit ball of V 1

BV 1 “ t ϕ P V
1
| }ϕ}V 1 ď 1 u ,

is weakly star compact.
In other words, from any bounded sequence in V 1, one can extract a sub-sequence
converging for the weak * topology.

When V is a reflexive space, V is identified to its bidual V ” and the weak and
weak * topologies coincide. Theorem 1.1.4 holds with V instead of V 1. In fact, we
even have a stronger result since it is reflexive spaces characterization.

Theorem 1.1.5 (Kakutani) Let V be a Banach space. Then V is reflexive if and
only if the unit closed ball of V

BV “ t x P V | }x}V ď 1 u ,

is weakly compact, that is from any bounded sequence in V , one can extract a sub-
sequence converging for the weak topology.

An immediate corollary is:

Corollary 1.1.2 Let V be a Banach space. then V is reflexive if and only if V 1 is
reflexive.

1.2 Gâteaux-differentiability of convex functionals

Now let differentiability properties useful in the context of optimization in a Banach
space.

Definition 1.2.1 Let J a functional from V to RYt`8u. We say that J is Gâteaux-
differentiable at u P dom pJq if the directional derivative

J 1pu; vq “ lim
tÑ0`

Jpu` tvq ´ Jpuq

t
,

exits for any direction v of V and if

v ÞÑ J 1pu; vq

is linear continuous. Here dom (J) is the set of u P X such that Jpuq is finite.

We shall denote ∇Jpuq the Gâteaux-derivative of J at u. It belongs to the dual V 1.
If V is an Hilbert space, then with Riesz theorem (see [3]) one may identify V and
its dual space; we have then

J 1pu; vq “ p∇Jpuq, vq ,
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where p¨, ¨q is the inner product of V . The element ∇Jpuq P V is the gradient of J
at u.

It is clear that if J is differentiable in the classical sense (say Fréchet - differ-
entiable) at u, then J is Gâteaux-differentiable at u and the classical and Gâteaux
derivatives coincide.

Theorem 1.2.1 Let be J : C Ă V Ñ R, Gâteaux differentiable on C, with C convex.
J is convex if and only if

@pu, vq P C ˆ C Jpvq ě Jpuq ` 〈∇Jpuq, v ´ u〉 (1.1)

Theorem 1.2.2 Let be J : C Ă V Ñ R, Gâteaux differentiable on C, with C convex.
J is convex if and only if ∇J is a monotone operator, that is

@pu, vq P C ˆ C 〈∇Jpuq ´∇Jpvq, u´ v〉 ě 0. (1.2)

Remark 1.2.1 Assume that ∇ is a strictly monotone operator

@pu, vq P C ˆ C, u ‰ v, 〈∇Jpuq ´∇Jpvq, u´ v〉 ą 0. (1.3)

then J is strictly convex.

Similarly, we define the (Gâteaux) second derivative of J at u, as the derivative
of the (vectorial) function u ÞÑ ∇Jpuq. We denote D2Jpuq and called it Hessian by
analogy with the Hessian in the sense of Fréchet; this Hessian is identifiable to a
nˆ n square matrix when V “ Rn.

1.3 Minimization in a reflexive Banach space

Unless otherwise stated, we now assume that V is a reflexive Banach space with
(topological) dual V 1.
Let us begin with a general minimization result of a semi-continuous functional on
a closed set of V .

Definition 1.3.1 We say that J : V Ñ R is coercive if

lim
}x}VÑ`8

Jpxq “ `8.

Theorem 1.3.1 Assume that V is a reflexive Banach space. Let J be a functional
from V to RYt`8u, lower semi-continuous for the weak topology of V . Let K be a
non empty weakly closed subset of V . Assume that J is proper (there exists vo P K
such that Jpvoq ă `8). Then the following minimization problem

pPq
"

Find u such that
Jpuq “ inf t Jpvq | v P K u,

(1.4)

has at least a solution if one of the following conditions is verified :
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• either J is coercive i.e. lim
}v}VÑ`8

Jpvq “ `8,

• or K is bounded.

An important corollary concerns the convex case.

Corollary 1.3.1 Assume V is a reflexive Banach space. Let J be a functional from
V to R Y t`8u, proper, convex and lower semi-continuous and K be a non empty
closed convex subset of V . If J is coercive or K is bounded, then the minimization
problem has at least a solution. Moreover, if J is strictly convex the solution is
unique.

We end with first order optimality conditions.

Theorem 1.3.2 Let K be non empty convex subset of V and J a functional from
K to R Gâteaux-differentiable on K. Let be u P K a solution to problem pPq. Then

@v P K, ă ∇Jpuq, v ´ u ąě 0. (1.5)

1.4 Convex and non smooth analysis

1.4.1 Hahn -Banach Theorem

In what follows X is a real Banach space with dual X 1 (not necessarily reflexive).
We note x¨, ¨y the duality product between X and X 1:

@ϕ P X 1, @x P X xϕ, xy “ ϕpxq .

The geometrical form of Hahn-Banach theorem separates convex sets. It is very
important in convex analysis and is used in particular to exhibit lagrange multipliers
in optimization. We recall here the geometrical forms of this theorem (which is the
only useful in our case) and significant corollaries as well. For demonstrations and
more details we refer to [3].

Definition 1.4.1 (Affine hyperplane ) An affine closed hyperplane is defined as

H “ t x P X | xα, xy ` β “ 0 u,

where α P X 1 is non zero and β P R.

When X is an Hilbert space V (in particular if V “ Rn), then V » V 1 and any
affine closed hyperplane takes the form

H “ t x P V | pα, xq ` β “ 0 u,

where p¨, ¨q is the inner product V , α P V, α ‰ 0 and β P R.
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Definition 1.4.2 (Separation) Let A and B be two non empty subsets of X . The
affine hyperplane H xα, xy ` β “ 0, separates A and B if

@x P A xα, xy ` β ď 0 and @y P B xα, yy ` β ě 0.

H strictly separates A and B if there exists ε ą 0 such that

@x P A xα, xy ` β ď ´ε and @y P B xα, yy ` β ě ε.

We may now give the first geometrical form of Hahn-Banach theorem:

Theorem 1.4.1 Let A and B be two non empty convex subsets of X such that
A X B “ H. Assume A is open. Then, there exists an affine closed hyperplane
which separates A and B.

Corollary 1.4.1 Let C be a non empty closed convex subset of Rn and x˚ P C.
Then x˚ P Int pCq if and only if there is no linear form that separates x˚ and C.

The second geometrical form of Hahn-Banach theorem writes :

Theorem 1.4.2 Let A and B be two non empty, convex, subsets of X such that
A X B “ H.Assume that A is closed and B is compact. Then, there exists an
affine closed hyperplane which strictly separates A and B.

1.4.2 Subdifferential

Definition 1.4.3 Let be f : X Ñ RY t`8u and u P dom f (i.e. fpuq ă `8). The
subdifferential of f at u is the set Bfpuq (possibly empty) of elements u˚ P X 1 such
that

@v P X fpvq ě fpuq ` 〈u˚, v ´ u〉 .

These elements u˚ are the subgradients.

Remark 1.4.1 1. f : X Ñ R Y t`8u achieves its minimum at u P dom f if and
only if

0 P Bfpuq.

2. if f, g : X Ñ RY t`8u and u P dom fX dom g, we get

Bfpuq ` Bgpuq Ă Bpf ` gqpuq.

3. As
Bfpuq “

č

vPX
tu˚ P X 1 | 〈u˚, v ´ u〉 ď fpvq ´ fpuq u,

then Bfpuq is convex, weak * closed set.
4. for every λ ą 0 we get Bpλfqpuq “ λBfpuq.
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Theorem 1.4.3 (Link with Gâteaux-differentiability) Let be f : X Ñ R Y
t`8u convex.
If f is Gâteaux-differentiable at u P dom f , it is subdifferentiable and Bfpuq “
tf 1puqu.
Conversely, if f is finite, continuous at u and has only one subgradient, then f is
Gâteaux-differentiable at u and Bfpuq “ tf 1puqu.

Theorem 1.4.4 (Subdifferential of a sum) Let f and g convex, lower semi-
continuous with values in RY t`8u. Assume there exists uo Pdom fX dom g such
that f is continuous at uo. Then

@u P X Bpf ` gqpuq “ Bfpuq ` Bgpuq.

We end with a chain rule result

Theorem 1.4.5 Let Λ be a linear continuous operator from V to W (Banach
spaces). Let f be convex, lower semi-continuous from W dans R Y t`8u contin-
uous at (at most) a point of its (non empty) domain. Then

@u P V Bpf ˝ Λqpuq “ Λ˚BfpΛuq,

where Λ˚ is the adjoint operator of Λ.

Details on these notions can be found [2, 5].
We conclude with an important example.

1.4.3 Application to a set indicator

When f is the indicator function of a non empty subset K of X :

fpuq
def
“ 1Kpuq “

"

0 if u P K,
`8 else

(1.6)

the subdifferential of f at u is called the normal cone of K at u:

B1Kpuq “ NKpuq “ t u
˚
P X 1 | 〈u˚, v ´ u〉 ď 0 for every v P K u.

When X is an Hilbert space (identified to its dual,) and K is a non empty, convex
closed subset of X , we may describe the subdifferential of 1K at u (that is the normal
cone to K at u ):

Proposition 1.4.1 Let be u P K, where K is a non empty, convex closed subset of
X (Hilbert space). Then for any c ą 0,

λ P B1Kpuq ðñ λ “ cru`
λ

c
´ PKpu`

λ

c
qs

where PK is the projection of X onto the convex set K.
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Proof. We first note that B1Kpuq is a subset of X . We recall that if PK is the
projection of X onto the closed, convex set K, the image PKpwq of any w P X is
characterized by

@v P K pw ´ PKpwq, v ´ PKpwqqX ď 0,

where p¨, ¨qX is the inner product of X . Let be λ P B1Kpuq: λ is characterized by

@v P K pλ, v ´ uqX ď 0

that is, for any c ą 0

@v P K

ˆ

u`
λ

c
´ u, v ´ u

˙

X
ď 0.

Setting w “ u`
λ

c
we get

λ P B1Kpuq ðñ u “ PKpu`
λ

c
q ðñ λ “ cru`

λ

c
´ PKpu`

λ

c
qs.

1.4.4 Legendre-Fenchel transformation

Definition 1.4.4 Let be f : X Ñ RY t`8u.The Legendre-Fenchel transformed or
conjugate function of f is f˚ : X 1 Ñ R̄ defined as

@` P X 1 f˚p`q “ sup
uPX
t `puq ´ fpuq u. (1.7)

Remark 1.4.2 (a) if f “takes ” the value ´8, then f˚ ” `8. If f is proper (that
is non identically equal to `8) then f˚ takes its values in RY t`8u.
(a) We shall note `puq “ă `, u ą, where ă ¨, ¨ ąis the duality product between X
and X 1. Equation (1.7) reads

@u˚ P X 1 f˚pu˚q “ sup
uPX
t xu˚, uy ´ fpuq u.

Definition 1.4.5 Let A Ă X be a non empty set. The support function of A is
σA : X 1 Ñ RY t`8u defined by σA “ p1Aq

˚

Example 1.4.1 Let A be a set and fpxq “ dpx,Aq. Then f˚ “ σA ` 1B˚ where B
is the unit ball of X 1.
If f : u ÞÑ }u}X (where } ¨ }X is the norm of X ), then f˚ “ 1B˚

Proposition 1.4.2 For every function f : X Ñ R Y t`8u, the function f˚ is
convex and lower semi-continuous for the weak * topology.
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Proof. The definition gives
f˚ “ sup

uPdomf
ϕu,

where dom f is the domain of f ( i.e. the set of u P X such that fpuq is finite) and
ϕu : X 1 Ñ R is defined by

ϕupu
˚
q “ă u˚, u ą ´fpuq.

Every function ϕu is affine and continuous, so convex and lower semi-continuous for
the weak * topology of X 1. It is the same for the supremum.

l

More generally

Proposition 1.4.3 Let f be a positively homogeneous (proper) function from X to
RY t`8u, that is such that

@λ P R, @x P X fpλxq “ |λ|fpxq .

Then the conjugate f˚ is the indicator function of a closed, convex subset K of X 1.

Proof. Let f be a positively homogeneous (proper) function from X to R Y t`8u.
Let be u˚ P X 1. Two cases occur:
‚ Duo P X such that xu˚, uoy ´ fpuoq ą 0. Then, by homogeneity, for every λ ą 0

xu˚, λuoy ´ fpλuoq “ λrxu˚, uoy ´ fpuoqs ď f˚pu˚q.

Passing to the limit as λÑ `8 we get f˚pu˚q “ `8.
‚ On the contrary

@u P X xu˚, uy ´ fpuq ď 0,

and f˚pu˚q ď 0. The definition of f˚ yields

xu˚, 0y ´ fp0q ď f˚pu˚q ;

as f is a positively homogeneous fp0q “ fpn ¨ 0q “ nfp0q for every n P N and
fp0q “ 0. We eventually obtain f˚pu˚q “ 0.
Set K “ tu˚ P X ˚ | f˚pu˚q “ 0 u. We just proved that f˚ “ 1K . As f˚ is convex
and lower semi-continuous, K is convex and closed. l

We now give a result between f ` g and f˚` g˚ which is the basis for the theory
of duality in convex analysis:

Theorem 1.4.6 Let f, g : X Ñ R Y t`8u be convex functions such that, there
exists uo P dom g with f continuous at uo. Then

inf
uPX

pfpuq ` gpuqq “ max
u˚PX 1

p´f˚pu˚q ´ g˚p´u˚qq .
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Proof. Set

α “ inf
uPX

pfpuq ` gpuqq and β “ sup
u˚PX 1

p´f˚pu˚q ´ g˚p´u˚qq .

Let be u P X and u˚ P X 1: with the definition we get

´f˚pu˚q ď ´ ă u˚, u ą `fpuq and ´ g˚p´u˚q ďă u˚, u ą `gpuq,

so
´f˚pu˚q ´ g˚p´u˚q ď fpuq ` gpuq ;

passing to the sup in the left hand side and to the inf in the right hand side, we get

β ď α.

Let us show the converse inequality. As uo P dom fX dom g, α P RY t´8u.
If α “ ´8, the theorem is proved and we may assume that α P R. Let be

C “ intptpu, tq P X ˆ R | fpuq ď t uq,

and
D “ tpu, tq P X ˆ R | t ď α ´ gpuq uq ‰ H.

As f and g are convex, C and D are convex. As f is continuous at uo, C is non
empty. Moreover C X D “ H. We may apply Hahn-Banach theorem: there exists
pu˚o , soq P X 1 ˆ Rzt0, 0u and c P R such that

@pv, sq P D ă u˚o , v ą `sso ě c,

and
@pw, σq P C c ěă u˚o , w ą `σso. (1.8)

As σ may go to `8 with the definition of C, we get so ď 0.
Assume that so ‰ 0. In that case, so ă 0 and (up to a division by |so|) we may
assume that so “ ´1. We obtain

@pv, sq P D ´ ă u˚o , v ą `s ď ´c.

Let u P X and s “ α ´ gpuq: the couple pu, sq belongs to D. So

@u P X ´ ă u˚o , u ą `α ´ gpuq ď ´c.

On the other hand, relation (1.8) may be extended to C̄ and, by convexity

C̄ “ tpu, tq P X ˆ R | fpuq ď t u ;

we may apply it to pu, fpuq for every u P X which gives
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c ěă u˚o , u ą ´fpuq.

Finally,
g˚p´u˚oq ď ´c´ α and f˚pu˚oq ď c.

So
α ď ´f˚pu˚oq ´ g

˚
p´u˚oq ď β ď α

which ends the proof.
Case where so “ 0: as f is continuous at uo one may find a ball Bpuo, Rq with
R ą 0 included in dom f . Then puo, α ´ gpuoqq P D and for every w P Bpuo, Rq,
puo ` w, fpuoq ` εoq P C: this gives

ă u˚o , uo ` w ąď c ďă u˚o , uo ą .

This implies that u˚o “ 0 and a contradiction since pu˚o , soq ‰ p0, 0q. l

Remark 1.4.3 Note that in the theorem the right hand term “sup” is always
achieved (it is a maximum) which is not the case in the left hand term where the
infimum is not necessarily achieved.

Corollary 1.4.2 Let f : X Ñ RY t`8u be convex continuous at u P X . Then

fpuq “ max
u˚PX 1

pă u˚, u ą ´f˚pu˚qq .

Proof. Set g “ 1tuu. We get g˚pu˚q “ă u˚, u ą for every u˚ P X 1. Functions f and
g are convex and f is continuous at u Pdom g. The previous theorem gives

fpuq “ inf
uPX
pf ` gqpuq

“ max
u˚PX 1

p´f˚pu˚q ´ g˚p´u˚qq “ max
u˚PX 1

pă u˚, u ą ´f˚pu˚qq .

l

This result can be generalized to convex lower semi-continuous functions

Theorem 1.4.7 Let f : X Ñ R Y t`8u be convex and lower semi-continuous.
Then, for every u P X

fpuq “ max
u˚PX 1

pă u˚, u ą ´f˚pu˚qq .

Proof. See [2] p. 89. l

We end with a biduality result which a corollary of the previous theorem if X is
reflexive. This result still holds true even if X is not reflexive.

Theorem 1.4.8 Let f be a proper, convex and lower semi-continuous function from
X to RY t`8u. Then f˚˚ “ f .
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1.4.5 Link with the subdifferential

Theorem 1.4.9 Let be f : X Ñ RY t`8u and f˚ the conjugate function. Then

u˚ P Bfpuq ðñ fpuq ` f˚pu˚q “ 〈u˚, u〉 .

Proof. Let u˚ P Bfpuq:

@v P X fpvq ě fpuq ` 〈u˚, v ´ u〉 .

So
f˚pu˚q ě 〈u˚, u〉´ fpuq ě supt〈u˚, v〉´ fpvq | v P X u “ f˚pu˚q.

We get :fpuq ` f˚pu˚q “ 〈u˚, u〉.
Conversely, if fpuq ` f˚pu˚q “ 〈u˚, u〉 we get, for every v P X

〈u˚, u〉´ fpuq “ f˚pu˚q ě 〈u˚, v〉´ fpvq,

〈u˚, v ´ u〉 ď fpvq ´ fpuq,

that is u˚ P Bfpuq. l

Corollary 1.4.3 If f : X Ñ RYt`8u is convex, proper and lower semi-continuous,
then

u˚ P Bfpuq ðñ u P Bf˚pu˚q.

Proof. It suffices to use the previous theorem to f˚ and use that if f is convex,
proper and lsc then f “ f˚˚. l



2

The space of functions with bounded variation

2.1 Sobolev spaces

For more details, one may refer to [4]. Let Ω be a bounded open subset of Rn, (n ď 3
in practical cases) with regular boundary Γ . We call DpΩq the space of functions
C8 with compact support in Ω. The dual space D1pΩq is the space of distributions
on Ω.

For any distribution u P D1pΩq, the derivative
Bu

Bxi
is defined (by duality) as :

@ϕ P DpΩq
B

Bu

Bxi
, ϕ

F

D1pΩq,DpΩq

def
” ´

B

u,
Bϕ

Bxi

F

D1pΩq,DpΩq
.

We denote the derivative of u in the sense of distributions Diu “
Bu

Bxi
“ Biu.

if α P Nn, we note Dαu “ Bα1
1 u ¨ ¨ ¨ Bαn

n u and |α| “ α1 ` ¨ ¨ ¨ ` αn; we get

@ϕ P DpΩq xDαu, ϕyD1pΩq,DpΩq “ p´1q|α| xu,DαϕyD1pΩq,DpΩq .

Definition 2.1.1 We define the Sobolev spaces Wm,ppΩq as following:

Wm,p
pΩq “ t u P LppΩq | Dαu P LppΩq, |α| ď m u

Hm
pΩq “ Wm,2

pΩqt u P D1pΩq | Dαu P L2
pΩq, |α| ď m u .

Remark 2.1.1 HopΩq “ L2pΩq.

We will enunciate a series of properties of Sobolev spaces without proofs. We can
see [4] for example.

Proposition 2.1.1 HmpΩq endowed with the scalar product

pu, vqm “
ÿ

|α|ďm

ż

Ω

Dαupxq Dαvpxq dx ,

is an Hilbert space.
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Proposition 2.1.2
Hm

pΩq Ă Hm1
pΩq

and the injection is continuous, for m ě m1.

Definition 2.1.2
H1
o pΩq “ t u P H

1
pΩq | u|Γ “ 0 u .

It is also the closure of DpΩq in H1pΩq.

Hm
o pΩq “ t u P H

1
pΩq |

Bju

Bnj |Γ
“ 0, j “ 1, ¨ ¨ ¨ ,m´ 1u ,

where
B

Bn
is the derivative of u along the exterior normal to the boundary Γ :

Bu

Bn
“

n
ÿ

i“1

Bu

Bxi
cospn, eiq ,

where n is the exterior normal vector to Γ and Ω is smooth enough (Γ is C8 for
example).

Definition 2.1.3 For every m P N, we note H´mpΩq the dual space of Hm
o pΩq.

Theorem 2.1.1 (Rellich) If Ω is a bounded open subset of Rn, then for every
m P N, the embedding of Hm`1

o pΩq in Hm
o pΩq is compact.

In particular the embedding of H1
o pΩq in L2pΩq is compact.

Practically, this means that any bounded sequence for the H1
o pΩq norm, weakly con-

verges in H1
o pΩq (up to a subsequence) and strongly in L2pΩq.

2.2 The space of functions of bounded variation BV pΩq

2.2.1 Definition

In the sequel Ω is a bounded open subset of R2 with Lipschitz boundary and
C1
c pΩ,R2q is the space of C1 functions with compact support in Ω with values in

R2.

Definition 2.2.1 A function f P L1pΩq (with values in R) is with bounded variation
in Ω if Φpfq ă `8 where

Φpfq “ sup

"ż

Ω

fpxq div ϕpxq dx | ϕ P C1
c pΩ,R2

q , }ϕ}8 ď 1

*

. (2.1)

We denote
BV pΩq “ tf P L1

pΩq | Φpfq ă `8u

the space of such functions.
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Remark 2.2.1 Recall that if ϕ “ pϕ1, ϕ2q P C1
c pΩ,R2q then

@x “ px1, x2q P Ω div ϕpxq “
Bϕ1

Bx1

pxq `
Bϕ2

Bx2

pxq .

So, integrating by parts

ż

Ω

fpxq div ϕpxq dx “

ż

Ω

ˆ

fpxq
Bϕ1

Bx1

pxq `
Bϕ2

Bx2

pxq

˙

dx

“ ´

ż

Ω

ˆ

Bf

Bx1

pxqϕ1pxq `
Bf

Bx2

pxqϕ2pxq

˙

dx

“ ´

ż

Ω

∇fpxq ¨ ϕpxq dx ,

where ¨ is the scalar product of R2 : x ¨ y “ x1y1 ` x2y2 .

Definition 2.2.2 (Perimeter) A set measurable E ( for the Lebesgue measure )
of R2 is of finite perimeter (or length) if its characteristic function χE (χE “ 1 on
E and 0 elsewhere) belongs to BV pΩq.

Recall that a Radon measure is a measure finite on any compact set and with the
Riesz theorem, any linear continuous form L on Coc pΩq (continuous functions with
compact support) may be written as

Lpfq “
ż

Ω

fpxq dµ ,

where µ is the (unique) Radon measure associated to L. More precisely

Theorem 2.2.1 ([9] p. 126, [6] p. 49 ) For every linear bounded form L on Coc pΩ,R2q,
that is

@K compact subset of Ω, sup
 

Lpϕq | ϕ P Coc pΩ,R2
q , }ϕ}8 ď 1 , suppϕ Ă K

(

ă `8 ,

there corresponds a unique positive Radon measure µ on Ω and a function µ-
measurable σ (“ sign” function) such that
(i) |σpxq| “ 1, µ a. e. , and

(ii) Lpϕq “
ż

Ω

ϕpxqσpxq dµ for every function ϕ P Coc pΩ,R2q .

(iii) Moreover µ is the variation measure and verifies

µpΩq “ sup
 

Lpϕq | ϕ P Coc pΩ,R2
q , }ϕ}8 ď 1 , suppϕ Ă Ω

(

. (2.2)

We may give a structural property of BV pΩq functions.
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Theorem 2.2.2 Let be f P BV pΩq. There exists a positive Radon measure µ on Ω
and a function µ-measurable σ : Ω Ñ R such that
(i) |σpxq| “ 1, µ a. e. , and

(ii)

ż

Ω

fpxq div ϕpxq dx “ ´

ż

Ω

ϕpxqσpxq dµ for every function ϕ P C1
c pΩ,R2q.

Relation (ii) is a weak integration by parts formula. This theorem shows that the
weak derivative (in the sense of distributions) of a BV pΩq function is a Radon
measure.
Proof - Let be f P BV pΩq and consider the linear form L defined on C1

c pΩ,R2q by

Lpϕq “
ż

Ω

fpxqdiv ϕpxq dx .

As f P BV pΩq,

CL :“ sup
 

Lpϕq | ϕ P C1
c pΩ,R2

q , }ϕ}8 ď 1
(

ă `8

for every function ϕ P C1
c pΩ,R2q, so that

@ϕ P C1
c pΩ,R2

q Lpϕq ď CL}ϕ}8 . (2.3)

Let K be a compact subset of Ω. For every function ϕ P Coc pΩ,R2q with compact
support in K, one may find (by density) a sequence of functions ϕk P C1

c pΩ,R2q

uniformly convergent to ϕ. Let us set

L̄pϕq “ lim
kÑ`8

Lpϕkq .

With (2.3) the limit exists and does not depend on the sequence pϕkq. One may
extend L by density to a linear form L̄ on Coc pΩ,R2q such that

sup
 

L̄pϕq | ϕ P Coc pΩ,R2
q , }ϕ}8 ď 1 , suppϕ Ă K

(

ă `8 .

We conclude with the Riesz theorem. l

With (2.2), Φpuq “ µpΩq ě 0: it is the total variation of f . The application

BV pΩq Ñ R`
u ÞÑ }u}BV pΩq “ }u}L1 ` Φpuq .

is a norm. We endow the space BV pΩq with this norm.

Example 2.2.1 Assume that

f P W 1,1
pΩq “ t f P L1

pΩq | Df P L1
pΩq u ,

where Df is the derivative of f (in the sense of distributions). Let ϕ P C1
c pΩ,R2q be

such that }ϕ}8 ď 1. Then
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ż

Ω

f div ϕdx “ ´

ż

Ω

Df ¨ ϕdx ď }ϕ}8

ż

Ω

|Df | dx ď }Df}L1 ă `8 .

Therefore f P BV pΩq. Moreover

Φpfq “ supt´

ż

Ω

Df ¨ ϕdx | }ϕ}8 ď 1 u “ }Df}L1 ,

and

σ “

$

&

%

Df

|Df |
if Df ‰ 0 ,

0 else.

So W 1,1pΩq Ă BV pΩq. In particular, as Ω is bounded

@1 ď p ď `8 W 1,p
pΩq Ă BV pΩq .

Remark 2.2.2 With Radon-Nikodym theorem that describes measures decomposi-
tion, then for every function u P BV pΩq, the following decomposition of Du holds:

Du “ ∇u dx`Dsu ,

where ∇u dx is the absolutely continuous part of Du with respect to the Lebesgue
measure and Dsu is the singular part.

2.2.2 Approximation and compactness

Theorem 2.2.3 (Lower semi-continuity of the total variation ) The appli-
cation u ÞÑ Φpuq from BV pΩq to R` is lower semi-continuous for the sequential
topology of L1pΩq.
More precisely, if pukq is a sequence of functions in BV pΩq that converges to u
strongly in L1pΩq then

Φpuq ď lim inf
kÑ`8

Φpukq .

Proof - Let ϕ P C1
c pΩ,R2q be such that }ϕ}8 ď 1. Then

ż

Ω

upxq div ϕpxq dx “ lim
kÑ`8

ż

Ω

ukpxq div ϕpxq dx .

So, for every ε ą 0, there exists krϕ, εs such that for every k ě krϕ, εs :

ż

Ω

upxq div ϕpxq dx´ ε ď

ż

Ω

ukpxq div ϕpxq dx ď

ż

Ω

upxq div ϕpxq dx` ε .

As
ż

Ω

ukpxq div ϕpxq dx ď Φpukq
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it comes

@k ě krϕ, εs

ż

Ω

upxq div ϕpxq dx´ ε ď Φpukq ,

and therefore
ż

Ω

upxq div ϕpxq dx ď lim inf
kÑ`8

Φpukq .

As it true for every ϕ, we obtain

Φpuq ď lim inf
kÑ`8

Φpukq .

l

We admit the following result

Theorem 2.2.4 (Approximation) For every function u P BV pΩq, there exists a
sequence of functions pukqkPN of BV pΩq X C8pΩq such that
(i) uk Ñ u in L1pΩq and
(ii) Φpukq Ñ Φpuq (in R).

The proof use a classical regularization process (by convolution). On can refer to [6]
p.172.
The previous result is not a density result of BV pΩq X C8pΩq in BV pΩq since we
do not have Φpuk ´ uq Ñ 0 but only Φpukq Ñ Φpuq.

Theorem 2.2.5 The space BV pΩq endowed with the norm

u ÞÑ }u}BV pΩq “ }u}L1 ` Φpuq

is a Banach space.

Proof - Let punqnPN be a Cauchy sequence of BV pΩq. It is also a Cauchy sequence
in L1pΩq: so it converges to some u P L1pΩq. On the other hand, it is bounded in
BV pΩq (as a Cauchy sequence), so

DM ą 0, @n Φpunq ďM .

With theorem 2.2.3,

Φpuq ď lim inf
nÑ8

Φpunq ďM ă `8 .

This implies that u P BV pΩq. Let be ε ą 0 and N such that

@n, k ě N }un ´ uk}BV pΩq ď ε .

So
@n, k ě N Φpun ´ ukq ď ε

and with the lower semi-continuity of Φ (fixing n) we get

@n ě N Φpun ´ uq ď lim inf
kÑ8

Φpun ´ ukq ď ε .

This proves Φpun ´ uq Ñ 0. l

We end with a compactness result that we will admit
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Theorem 2.2.6 (compactness ) The space BV pΩq is compactly embedded in L1pΩq.
More precisely, if punqnPN is a bounded sequence in BV pΩq

sup
nPN

}un}BV pΩq ă `8 ,

then , there exists a subsequence punk
qkPN and a function u P BV pΩq such that unk

strongly converges to u in L1pΩq.

Proof - [6] p.176. l

More generally we have Sobolev type injections :

Theorem 2.2.7 (Embedding in Lp spaces ) Assume Ω is a smooth open subset
of RN . then

• The space BV pΩq is continuously embedded in LppΩq for 1 ď p ď
N

N ´ 1

• The space BV pΩq is compactly embedded in LppΩq for 1 ď p ă
N

N ´ 1

In particular, for N “ 2 the space BV pΩq is continuously embedded in L2pΩq.
For details on the functions with bounded variation, reference may be made to [6].

2.3 Variational method

Variational methods proposed to minimize noise while adding a priori on the desired
image. We will clarify this idea: we work now in a continuous (infinite-dimensional)
framework, and then we will make a discretization. Given an original image u0 we
assume it has been degraded by additive noise w, and possibly by a blur operator R.
From the observed image ud “ Ru0 ` v (which is a degraded version of the original
image u0), we attempt to reconstruct u0. If we assume that the additive noise w
is Gaussian, the method of maximum likehood leads to seek u0 as the solution of
minimization problem

inf
u
}ud ´Ru}

2
2,

where } ¨ }2 denotes the norm in L2pΩq. This is an ill-posed inverse problem : the
operator is not necessarily invertible (and even when invertible, its inverse is often
difficult numerically to compute). In other words, the existence and /or uniqueness
of solutions is not ensured and even if this is the case, the solution may not be stable
(that is continuous with respect to the data). To solve it numerically, we introduce
a regularization term (prior on the image), and consider the problem

inf
u
}ud ´Ru}

2
2

looooomooooon

data fitting

` Lpuq
loomoon

Regularization

.
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2.3.1 The continuous model of Rudin-Osher-Fatemi

We will first motivate the model that follows. In the discrete part, it consists of
replacing the square of the norm of the gradient of the standard image by (1 to the
power). The continuous model presented in next subsection is the rigorous mathe-
matical formalization of the change in the standard regularization term.

Recall that we wish to suppress noise while preserving the edges of the image
that is to say the discontinuity set of the function describing the image. Let us
consider the one-dimensional case, for example by taking a section of the image
below.

Fig. 2.1. Original image and smoothed image

White/black outline corresponds to the discontinuity in the original image. In the
smoothed image the discontinuity is regulated by an affine function. The gradient
of the image is the quantity describing the contours, the choice of the regularization
term is done by taking a primitive. Then we see that the standard (1D absolute
value) is preferable to the choice of the norm squared (in the 1D function x ÞÑ x2).
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(a) Discontinuity (b) Affine regularizing function

(c) Primitive: |x| (d) Primitive: x2

Fig. 2.2. Regularization }x} versus}x}
2

An alternative to the H1 -Tychonov regularization (which is too violent) is to
replace the regularization term }∇u}22 by a less restrictive regularizing term. Rudin,
Osher and Fatemi [7] proposed a model where the image is decomposed into two
parts: ud “ u ` w where w is the noise and the u part is regular. We will therefore
seek the solution of the problem in the form u`w with u P BV pΩq and w P L2pΩq.
This leads to :

pPROF q min

"

1

2
}w}22 ` εΦpuq | u P BV pΩq, w P L

2
pΩq, u` w “ ud

*

.

Here the regularization term is the total variation of u : Φpuq and ε ą 0. If the
function u belongs to

W 1,1
pΩq “ t u P L1

pΩq | ∇u P L1
pΩq upĂ BV pΩqq,

the total variation is Φpuq “ }∇u}1. Here } ¨ }p stands for the usual norm in LppΩq.

Theorem 2.3.1 Problem pPROF qhas a unique solution.
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Proof. Let pun, wnq P BV pΩq ˆ L
2pΩq be a minimizing sequence. As wn is bounded

in L2pΩq one may extract a subsequence weakly convergent to w˚ in L2pΩq. As the
L2pΩq norm is convex and lower semi-continuous, we get

}w˚}22 ď lim inf
nÑ`8

}wn}
2
2.

Similarly un “ ud´wn is bounded in L2pΩq and thus in L1pΩq since Ω is bounded.
As Φpunq is bounded, this yields that un is bounded in BV pΩq. With the compact
embedding of BV pΩq in L1pΩq (Theorem 2.2.6), we obtain that un converges (up
to a subsequence) strongly in L1pΩq to u˚ P BV pΩq.
Moreover Φ is lower semi-continuous (Theorem 2.2.3), so that

Φpu˚q ď lim inf
nÑ`8

Φpunq,

and

Φpu˚q `
1

2ε
}w˚}22 ď lim inf

nÑ`8
Φpunq `

1

2ε
}wn}

2
2 “ infpPROF q.

As un ` wn “ ud for every n, we have u˚ ` w˚ “ ud. Therefore u˚ is a solution to
problem pPROF q.
As the functional is strictly convex with respect to pu,wq and the constraint is affine
we get uniqueness.

We will need to establish optimality conditions for optimal solutions of the pro-
posed models. However, Φ is not Gâteaux-differentiable and we have to use the
notions of non-smooth analysis.

2.3.2 First order optimality conditions

Problem pPROF q equivalently writes

min
uPBV pΩq

Fpuq :“ Φpuq `
1

2ε
}u´ ud}

2
2. (2.4)

The functional F is convex and ū is solution to pPROF q if and only if 0 P BFpūq.
Relation: 0 P BFpūq ðñ ū P BF˚p0q, is true even if the space is not reflexive (see
Corollary1.4.3 et/and/or [1] Theorem 9.5.1 p. 333). Here F˚ is the Fenchel conjugate
of F .

We use Theorem 1.4.4 to compute BFpuq. The application u ÞÑ }u ´ ud}
2
2 is

continuous on L2pΩq and Φ is (convex) with values in R Y t`8u and finite on
BV pΩq. Furthermore, u ÞÑ }u´ ud}

2
2 is Gâteaux-differentiable on L2pΩq. As we are

going to use the convex duality we first compute the Legendre-Fenchel conjugate of
Φ.

Theorem 2.3.2 The Legendre-Fenchel conjugate Φ˚ of the total variation Φ is the
indicator function of the closure (in L2pΩq) of the set

K :“
 

ξ “ div ϕ | ϕ P C1
c pΩ,R2

q, }ϕ}8 ď 1
(

.
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Proof. Ad Φ is positively homogeneous la conjugate Φ˚ of Φ is the indicator function
of a closed, convex set K̃ in the dual of BV pΩq (Proposition 1.4.3). As L2pΩq is con-
tinuously embedded in BV pΩq (Theorem 2.2.7), the dual of BV pΩq is continuously
embedded in L2pΩq. Therefore K̃ is closed in L2pΩq.
We first prove that K Ă K̃: Let u P K. By definition

Φpuq “ sup
ξPK

pξ, uq , (2.5)

where p¨, ¨q is the inner product of L2pΩq. Therefore, pξ, uqq ´ Φpuq ď 0 for every
ξ P K and u P L2pΩq (Note that if u P L2pΩqzBV pΩq then Φpuq “ `8 by definition
of BV pΩq). We deduce that, for every u˚ P K

Φ˚pu˚q “ sup
uPL2pΩq

pu˚, uq ´ Φpuq “ sup
uPBV pΩq

pu˚, uq ´ Φpuq ď 0.

As Φ˚ has only one finite value we get Φ˚pu˚q “ 0, and u˚ P K̃. Consequently K Ă K̃
and as K̃ is closed:

K̄ Ă K̃.

In particular

Φpuq “ sup
ξPK

pu, ξq ď sup
ξPK̄

pu, ξq ď sup
ξPK̃

pu, ξq “ sup
ξPK̃

pu, ξq ´ Φ˚pξq “ Φ˚˚puq.

As Φ˚˚ “ Φ, we obtain

sup
ξPK

pu, ξq ď sup
ξPK̃

pu, ξq ď sup
ξPK

pu, ξq ,

and
sup
ξPK

pu, ξq “ sup
ξPK̄

pu, ξq “ sup
ξPK̃

pu, ξq . (2.6)

Assume there exists u˚ P K̃ such that u˚ R K̄. Then we may strictly separate u˚ and
the closed convex set K̄. There exists α P R and uo such that

puo, u
˚
q ą α ě sup

vPK̄
puo, vq .

With (2.6) we get

sup
ξPK̃

puo, ξq ě puo, u
˚
q ą α ě sup

vPK̄
puo, vq “ sup

vPK̃
puo, vq .

We have a contradiction: K̃ “ K̄. l
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Then u is a solution de pPROF q if and only if

0 P B

ˆ

Φpuq `
1

2ε
}u´ ud}

2
2

˙

“
u´ ud
ε

` BΦpuq.

As Φ is convex, lower semi-continuous and proper we may apply corollary1.4.3. So

ud ´ u

ε
P BΦpuq ðñ u P BΦ˚p

ud ´ u

ε
q ðñ 0 P ´u` BΦ˚p

ud ´ u

ε
q.

Finally, u is a solution de pPROF q if and only

0 P ´u` B1Kp
ud ´ u

ε
q,

that is

u P NKp
ud ´ u

ε
q ,

where NK is the normal cone to K.
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