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Single Scattering Optical Tomography (SSOT)

|
m Uses light, transmitted and scattered through an object, to
determine the interior features of that object.

m If the object has moderate optical thickness it is reasonable to
assume the majority of photons scatter once.

m Using collimated emitters/receivers one can measure the
intensity of light scattered along various broken rays.

m Need to recover the spatially varying coefficients of
light absorption and/or light scattering.



Florescu, Schotland and Markel (2009, 2010, 2011)

So if the scattering coefficient is known, then the reconstruction of
the absorption coefficient is reduced to inversion of a generalized
Radon transform integrating along the broken rays.
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Compton Scattering
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V-line Radon Transform (VRT) in 2D

Definition
The V-line Radon transform of function f(x,y) is the integral

RF(B, 1) = / f ds, (1)
BR(8,t)
of f along the broken ray BR(f, t) with respect to line measure ds.

The problem of inversion is over-determined, so it is natural to
consider a restriction of Rf to a two-dimensional set.



Geometry: Slab vs Disc

A=B.
B/ /6

m Available directions
m Stability of reconstruction

m Hardware implementation (?)



Full Data

If f(x,y) is a smooth function supported in the disc D(0, Rsin ),
then f is uniquely determined by Rf(¢,d), ¢ € [0,2x], d € [0,2R].




Inversion Formula

for all values ¢ € [0, 27r] and d € [0,2R].

f(x,y) = /H Rf (w,xcosw—l—ysmw) dy  (3)

where H is the Hilbert transform defined by

Hh(t) = _f sgn (r) h(r) e dr. (4)

and h(r) is the Fourier transform of h(t), i.e.

W)= = / e i dt. (5)



Inversion Formula

m Issues with the support
m Interior problem
m Other methods without loss of information

m Rotation invariance



VRT in a Disc: Partial Data (G.A., S. Moon 2013)

If f(x,y) is a smooth function supported in the disc D(0, R), then
f is uniquely determined by Rf(¢,d), ¢ € [0,27], d € [0, R].




Fourier Expansions
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Inversion Formula

o Mgn(s_ 1)
~1/(s — 1)+ Mhp(s — 1)’

where MF denotes the Mellin transform of function F

Mfy(s)

R(s) > 1 (6)

[e.e]

MF(s) = /ps‘lF(p) dp,
0

and h, is some fixed function. Hence for any t > 1 we have

t+Ti Mga(s —1)
fn =i oy, - n ‘
(p) TITOO 27 t—Ti p 1/(5 — 1) + Mhn(s - 1) o (7)




Definition of h,
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Numerical Reconstruction (G.A., S. Roy 2015)




Numerical Reconstruction (G.A., S. Roy 2015)
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VRT in Slab Geometry (G.A., R. Gouia-Zarrad 2013)
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fe COO(Rz) inD = {(X7}/) GRZ | 0 < x < Xmax, 0 < y S}/max}-

For (x,,y,) € R? and fixed 3 € (0, %) consider the VRT g(x, yv).
Then
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Numerical Implementation (2D)

(a) phantom (b) reconstruction N=220




Conical Surfaces of Various Flavors in 3D




CRT in Slab Geometry (G.A., R. Gouia-Zarrad 2013)

Consider a function f € C*(R3) supported in
D= {(Xa}/7z) € R3 | 0 <X < Xmax; 0Ly < Ymax, 0 <z < Zmax}-
For (xv, yv, z,) € R3 we define the 3D conical Radon transform by

g(xv, Wv,2v) = / f(x,y,z)ds.
C(Xv,y\/,Zv)



3D Slab Geometry (G.A., R. Gouia-Zarrad 2013)

Theorem

An exact solution of the inversion problem for CRT is given by

~ z d2 2 x
fru(z) = C(B) Jo (u(z — x)) [W -+ u2] / &\ u(zv) dz, dx

Zmax

where gy ,,(z,) and ?,\#(z) are the 2D Fourier transforms of the
functions g(xy, yv,z,) and f(x,y, z) with respect to the first two

variables, C(3) = cos® 3/(2msin 3) and u = tan B/\2 + u2.



Partial Order in R"” and Positive Cones

A Partially Ordered Vector Space V is a vector space over R
together with a partial order < such that

fx<ythenx+z<y+zforallzeV
A if x > 0 then cx > 0 for all c € Rt
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Partial Order in R"” and Positive Cones

A Partially Ordered Vector Space V is a vector space over R
together with a partial order < such that

fx<ythenx+z<y+zforallzeV
A if x > 0 then cx > 0 for all c € RT

From the definition we have x < y < 0 < y — x and hence the
order is completely determined by V* = {x € V;x > 0} positive
cone of V.

Furthermore, for P C V there is a partial order on V such that
P = VT if and only if

PN(-P) = {0}

P+PCP

c>0=cPCP



Partial Order in R” and Negative Cones

We consider partial orders in R" corresponding to negative cones
(R")z generated by a set of fixed basis vectors B = {vi, ..., vy},

e. Rz ={>iL1cviici > 0}.
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Partial Order in R” and Negative Cones

We consider partial orders in R" corresponding to negative cones
(R")z generated by a set of fixed basis vectors B = {vi, ..., vy},

e. Rz ={>iL1cviici > 0}.

In R? we will use linearly independent vectors u, v as a generating
set for the negative cone. In this case the boundary of the negative
cone is a broken line.

For f € L1(R") we define F on R” as
FO) = [ f)dn
yx

where p is the Lebesgue measure on R” and y < x represents the
negative cone at x with respect to partial order on R".



Partial Order in R” and Negative Cones

F(x) = /< f(y)du

X
P S
-
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Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

If < is the natural order on R, for an integrable function f and
Flx) = / F(y)dt
y<x

we have F' = f almost everywhere. Note that in this case F is
absolutely continuous.
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Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

If < is the natural order on R, for an integrable function f and
Flx) = / F(y)dt
y<x

we have F' = f almost everywhere. Note that in this case F is
absolutely continuous.

Can we have a “similar result” in higher dimensions?
We start from two dimensions. Let f be an integrable function on

R? (with [ |f| < o) with respect to Lebesgue measure and define
F(x) = fy<x f(y)du using the partial order made by u, v.



Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)
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at x, sides of length t, s and directions u, v.
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Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Define V4 s(x) as the average of f over the parallelogram centered
at x, sides of length t, s and directions u, v.

Note that the area of the parallelogram made with vectors tu, sv is
equal to |det (tu, sv)| = ts|det(u, v)|. Then

L )’[F(x+tu+sv)—F(X— LI

Violx) = ——
ts(X) = Loldet(u v 2" 72 275

t S t s
— F(x+ SU— Ev)—i—F(x— SU— Ev)]



Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Likewise, for n dimensions by a geometric argument and induction
over n we get the following averaging formula for f

1
t1...to|det(vi,..., vyl
Z sgn(ag ...an)F(x + artivi + ... aptyvy)

—11
O{G{T 5}"

th,‘..,t,,(X) =



Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Likewise, for n dimensions by a geometric argument and induction
over n we get the following averaging formula for f

1
ti...tn|det(vi, ..., vy)]

Z sgn(ag ...an)F(x + artivi + ... aptyvy)
ac(F

th,‘..,t,,(X) =

In special case, to get a symmetric neighborhood of x we can let
tj =---=t, =t to get the average of f over P, the
parallelograms with sides of length t centered at x

1 1
Vv, _ fdp= fdu.
t,...,t(X) tn |de‘|:(vl7 ey Vn)| Py g /Pt '




Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Now by averaging over this infinitesimal symmetric neighborhood
of x and applying the Lebesgue Differentiation Theorem we have

Theorem

Let < be an order in R" made from the positive cone of vy, ..., v,
and for f € L1(R") define

Fe) = [
y<x
Then for almost every x we have

f(x) = lim V¢ +(x).

t—0



Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Theorem
Let the hypothesis of the previous theorem be satisfied and f be
continuous. Then

1 0 0
) = et vlav v O

where % denotes the directional derivative along vector v;.
J



Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Theorem

Let the hypothesis of the previous theorem be satisfied and f be
continuous. Then

1 0 0
) = et vlav v O

where % denotes the directional derivative along vector v;.
J

How does this help us with the inversion of the broken-ray or
conical Radon transforms?



Inversion of BRT in 2D (G.A., M. Latifi-Jebelli 2016)

Assume that L(x,y) is the unique broken ray with vertex at (x, y)
and axis of symmetry a, where av = (., cvy) is a unit vector
parallel to “+" . Also, let 5 be the angle between v and a.



Inversion of BRT in 2D (G.A., M. Latifi-Jebelli 2016)

Assume that L(x,y) is the unique broken ray with vertex at (x, y)
and axis of symmetry a, where av = (., cvy) is a unit vector
parallel to “+" . Also, let 5 be the angle between v and a.

Theorem
Let R be the broken ray transform on L'(IR?) defined by:

(RF)(x,y) = /L E

Then -
F(x,y) = / (RF)(x + tax,y + tay) sin 8 dt
0

is the integral of f over the negative cone at (x,y). Hence

1 0 0

F6Y) = ettu v oo v

/ (Rf)(x + tax,y + tay) sin B dt



Inversion of BRT in 2D (G.A., M. Latifi-Jebelli 2016)




Polyhedral CRT in R" (G.A., M. Latifi-Jebelli 2016)

For any x € R", we define (Rf)(x) to be integral over the
boundary of polyhedral cone C generated by unit basis vectors
ui, ..., U, starting from x, i.e.

(Rf)(x) = /8 _fas,

where dS is n — 1 dimensional Lebesgue measure on 9C.
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Polyhedral CRT in R" (G.A., M. Latifi-Jebelli 2016)

For any x € R", we define (Rf)(x) to be integral over the
boundary of polyhedral cone C generated by unit basis vectors
ui, ..., U, starting from x, i.e.

(Rf)(x) = /8 _fas,

where dS is n — 1 dimensional Lebesgue measure on 9C.
Assume that ||u; — uj|| is constant for any / and j.

; __ntetup
Define w = Mo

Let X; = span{u1,...,Uj_1,Ujt1,-..,U,) be the hyperplane
containing a face of polyhedral cone and define y; to be a unit
vector in X,-l.



Polyhedral CRT in R" (G.A., M. Latifi-Jebelli 2016)

Theorem

Let R,w,y; be defined as above, then

F(x) = /OOO(Rf)(x+ wt)(w, y1) dt

is the integral of f over the polyhedral cone generated by us, ... u,
starting from x. Hence

1 0 0

6= e e /Ooo(Rf)(x+Wt)<w,y1>dt.
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Range Description (G.A., M. Latifi-Jebelli 2016)

Existence of f such that F(x) = [ ., f(y) dp.

What is the necessary and sufficient condition for a function F to
be a cone integral of another function f > 0 with respect to a
given order structure in R"?

In case of n =1 the answer was provided by absolute continuity.

We apply the Radon Nikodym Theorem to get the desired
description of F. For a given F, we construct a corresponding
measure v that implies existence of f.

We use the above conditions to obtain a range description for CRT.



Thanks for Your Attention!
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