The broken-ray transform and its generalizations

Gaik Ambartsoumian

University of Texas at Arlington

100 Years of the Radon Transform
Linz, March 27-31, 2017

Acknowledgements

- The talk is based on results of collaborative work with
- Rim Gouia-Zarrad, American University of Sharjah, UAE

■ Mohammad Latifi-Jebelli, University of Texas at Arlington

- Sunghwan Moon, UNIST, Korea
- Souvik Roy, Universität Würzburg, Germany
- Partially supported by

■ NSF DMS-1616564

- Simons Foundation 360357

Outline

- Some Motivating Imaging Modalities
- Prior Work and Terminology
- BRT in a Disc
- BRT in a Slab Geometry
- CRT in a Slab Geometry
- Partial Order and Positive Cones

■ Cone Differentiation

- BRT in a Slab Geometry (revisited)
- Polyhedral CRT in a Slab Geometry
- Radon-Nikodym Theorem and Range Description

Single Scattering Optical Tomography (SSOT)

■ Uses light, transmitted and scattered through an object, to determine the interior features of that object.

- If the object has moderate optical thickness it is reasonable to assume the majority of photons scatter once.
- Using collimated emitters/receivers one can measure the intensity of light scattered along various broken rays.
- Need to recover the spatially varying coefficients of light absorption and/or light scattering.

Florescu, Schotland and Markel (2009, 2010, 2011)

So if the scattering coefficient is known, then the reconstruction of the absorption coefficient is reduced to inversion of a generalized Radon transform integrating along the broken rays.

Compton Scattering

- R. Basko, G. Zeng, and G. Gullberg $(1997,1998)$

■ M. Nguyen, T. Truong, et al (2000's)

Broken-Ray and Conical Transforms

■ L. Florescu, V. Markel, J. Schotland, F. Zhao
■ P. Grangeat, M. Morvidone, M. Nguyen, R. Régnier, T. Truong, H. Zaidi

- A. Katsevich, R. Krylov
- F. Terzioglu
- V. Palamodov
- R. Gouia-Zarrad
- M. Courdurier, F. Monard, A. Osses and F. Romero
- D. Finch, B. Sherson

Broken-Ray and Conical Transforms

- M. Cree, P. Bones and R. Basko, G. Zeng, G. Gullberg

■ M. Allmaras, D. Darrow, Y. Hristova, G. Kanschat, P. Kuchment

■ M. Haltmeier

- C. Jung, S. Moon
- V. Maxim

■ D. Schiefeneder
■ M. Lassas, M. Salo, G. Uhlmann

- M. Hubenthal, J. Ilmavirta

V-line Radon Transform (VRT) in 2D

Definition

The V-line Radon transform of function $f(x, y)$ is the integral

$$
\begin{equation*}
\mathcal{R} f(\beta, t)=\int_{B R(\beta, t)} f d s, \tag{1}
\end{equation*}
$$

of f along the broken ray $B R(\beta, t)$ with respect to line measure $d s$.
The problem of inversion is over-determined, so it is natural to consider a restriction of $\mathcal{R} f$ to a two-dimensional set.

Geometry: Slab vs Disc

- Available directions
- Stability of reconstruction
- Hardware implementation (?)

Full Data

Theorem

If $f(x, y)$ is a smooth function supported in the disc $D(0, R \sin \theta)$, then f is uniquely determined by $\mathcal{R} f(\phi, d), \phi \in[0,2 \pi], d \in[0,2 R]$.

Inversion Formula

$$
\begin{equation*}
\widetilde{\mathcal{R}} f\left(\psi_{\phi}, t_{d}\right)=\mathcal{R} f(\phi, d)+\mathcal{R} f(\phi+\pi, 2 R-d)-\mathcal{R} f(\phi, 2 R) \tag{2}
\end{equation*}
$$

for all values $\phi \in[0,2 \pi]$ and $d \in[0,2 R]$.

$$
\begin{equation*}
f(x, y)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \mathcal{H}\left(\widetilde{\mathcal{R}} f_{t}^{\prime}\right)(\psi, x \cos \psi+y \sin \psi) d \psi \tag{3}
\end{equation*}
$$

where \mathcal{H} is the Hilbert transform defined by

$$
\begin{equation*}
\mathcal{H} h(t)=-\frac{i}{\sqrt{2 \pi}} \int_{\mathbb{R}} \operatorname{sgn}(r) \widehat{h}(r) e^{i r t} d r \tag{4}
\end{equation*}
$$

and $\widehat{h}(r)$ is the Fourier transform of $h(t)$, i.e.

$$
\begin{equation*}
\widehat{h}(r)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} h(t) e^{-i r t} d t \tag{5}
\end{equation*}
$$

Inversion Formula

- Issues with the support
- Interior problem
- Other methods without loss of information
- Rotation invariance

VRT in a Disc: Partial Data (G.A., S. Moon 2013)

Theorem

If $f(x, y)$ is a smooth function supported in the disc $D(0, R)$, then f is uniquely determined by $\mathcal{R} f(\phi, d), \phi \in[0,2 \pi], d \in[0, R]$.

Fourier Expansions

Denote $g(\beta, t):=\mathcal{R} f(\beta, t)$.

$$
f(\phi, \rho)=\sum_{n=-\infty}^{\infty} f_{n}(\rho) e^{i n \phi}, \quad g(\beta, t)=\sum_{n=-\infty}^{\infty} g_{n}(t) e^{i n \beta}
$$

where the Fourier coefficients are given by

$$
f_{n}(\rho)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\phi, \rho) e^{-i n \phi} d \phi, \quad g_{n}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\beta, t) e^{-i n \beta} d \beta
$$

Inversion Formula

$$
\begin{equation*}
\mathcal{M} f_{n}(s)=\frac{\mathcal{M} g_{n}(s-1)}{1 /(s-1)+\mathcal{M} h_{n}(s-1)}, \Re(s)>1 \tag{6}
\end{equation*}
$$

where $\mathcal{M F}$ denotes the Mellin transform of function F

$$
\mathcal{M} F(s)=\int_{0}^{\infty} p^{s-1} F(p) d p
$$

and h_{n} is some fixed function. Hence for any $t>1$ we have

$$
\begin{equation*}
f_{n}(\rho)=\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{t-T i}^{t+T i} \rho^{-s} \frac{\mathcal{M} g_{n}(s-1)}{1 /(s-1)+\mathcal{M} h_{n}(s-1)} d s \tag{7}
\end{equation*}
$$

Definition of h_{n}

If $1<t<\frac{1}{\sin \theta}$ then
$h_{n}(t)=(-1)^{n} e^{i n \psi(t)} \frac{1+t \cos [\psi(t)]+t^{2} \sin [\psi(t)] \frac{\sin \theta}{\sqrt{1-t^{2} \sin ^{2} \theta}}}{\sqrt{1+t^{2}+2 t \cos (\psi(t))}}$ $-e^{i n[2 \theta-\psi(t)]} \frac{1-t \cos [2 \theta-\psi(t)]+t^{2} \sin [2 \theta-\psi(t)] \frac{\sin \theta}{\sqrt{1-t^{2} \sin ^{2} \theta}}}{\sqrt{1+t^{2}-2 t \cos [2 \theta-\psi(t)]}}$,
$h_{n}(t)=(-1)^{n} e^{i m \psi(t)} \frac{1+t \cos [\psi(t)]+t^{2} \sin [\psi(t)] \frac{\sin \theta}{\sqrt{1-t^{2} \sin ^{2} \theta}}}{\sqrt{1+t^{2}+2 t \cos [\psi(t)]}}, 0<t \leq 1$ and $h_{n}(t) \equiv 0$, for all $t>\frac{1}{\sin \theta}$. Here $\psi(t)=\arcsin (t \sin \theta)+\theta$.

Numerical Reconstruction (G.A., S. Roy 2015)

Numerical Reconstruction (G.A., S. Roy 2015)

(a) Phantom

(b) Reconstructed

(c) Reconstruction with 5% multiplicative Gaussian noise.

VRT in Slab Geometry (G.A., R. Gouia-Zarrad 2013)

Theorem

$f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ in $\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq x_{\max }, 0 \leq y \leq y_{\max }\right\}$. For $\left(x_{v}, y_{v}\right) \in \mathbb{R}^{2}$ and fixed $\beta \in\left(0, \frac{\pi}{2}\right)$ consider the VRT $g\left(x_{v}, y_{v}\right)$. Then

$$
f(x, y)=-\frac{\cos \beta}{2}\left(\frac{\partial}{\partial y} g(x, y)+\tan ^{2}(\beta) \int_{y}^{y_{\max }} \frac{\partial^{2}}{\partial x^{2}} g(x, t) d t\right) .
$$

Numerical Implementation (2D)

(a) phantom

(b) reconstruction $\mathrm{N}=220$

Conical Surfaces of Various Flavors in 3D

CRT in Slab Geometry (G.A., R. Gouia-Zarrad 2013)

Consider a function $f \in C^{\infty}\left(\mathbb{R}^{3}\right)$ supported in $\mathcal{D}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq x \leq x_{\max }, 0 \leq y \leq y_{\max }, 0 \leq z \leq z_{\max }\right\}$. For $\left(x_{v}, y_{v}, z_{v}\right) \in \mathbb{R}^{3}$ we define the 3D conical Radon transform by

$$
g\left(x_{v}, y_{v}, z_{v}\right)=\int_{C\left(x_{v}, y_{v}, z_{v}\right)} f(x, y, z) d s
$$

3D Slab Geometry (G.A., R. Gouia-Zarrad 2013)

Theorem

An exact solution of the inversion problem for CRT is given by
$\widehat{f}_{\lambda, \mu}(z)=C(\beta) \int_{z_{\max }}^{z} J_{0}(u(z-x))\left[\frac{d^{2}}{d x^{2}}+u^{2}\right]^{2} \int_{z_{\max }}^{x} \widehat{g}_{\lambda, \mu}\left(z_{v}\right) d z_{v} d x$
where $\widehat{g}_{\lambda, \mu}\left(z_{v}\right)$ and $\widehat{f}_{\lambda, \mu}(z)$ are the $2 D$ Fourier transforms of the functions $g\left(x_{v}, y_{v}, z_{v}\right)$ and $f(x, y, z)$ with respect to the first two variables, $C(\beta)=\cos ^{2} \beta /(2 \pi \sin \beta)$ and $u=\tan \beta \sqrt{\lambda^{2}+\mu^{2}}$.

Partial Order in \mathbb{R}^{n} and Positive Cones

A Partially Ordered Vector Space V is a vector space over \mathbb{R} together with a partial order \leq such that

1 if $x \leq y$ then $x+z \leq y+z$ for all $z \in V$
2 if $x \geq 0$ then $c x \geq 0$ for all $c \in \mathbb{R}^{+}$
From the definition we have $x \leq y \Leftrightarrow 0 \leq y-x$ and hence the order is completely determined by $V^{+}=\{x \in V ; x \geq 0\}$ positive cone of V.

Furthermore, for $P \subset V$ there is a partial order on V such that $P=V^{+}$if and only if

$$
P \cap(-P)=\{0\}
$$

Partial Order in \mathbb{R}^{n} and Positive Cones

A Partially Ordered Vector Space V is a vector space over \mathbb{R} together with a partial order \leq such that

1 if $x \leq y$ then $x+z \leq y+z$ for all $z \in V$
2 if $x \geq 0$ then $c x \geq 0$ for all $c \in \mathbb{R}^{+}$
From the definition we have $x \leq y \Leftrightarrow 0 \leq y-x$ and hence the order is completely determined by $V^{+}=\{x \in V ; x \geq 0\}$ positive cone of V.

Furthermore, for $P \subset V$ there is a partial order on V such that $P=V^{+}$if and only if

$$
P \cap(-P)=\{0\}
$$

Partial Order in \mathbb{R}^{n} and Positive Cones

A Partially Ordered Vector Space V is a vector space over \mathbb{R} together with a partial order \leq such that

1 if $x \leq y$ then $x+z \leq y+z$ for all $z \in V$
2 if $x \geq 0$ then $c x \geq 0$ for all $c \in \mathbb{R}^{+}$
From the definition we have $x \leq y \Leftrightarrow 0 \leq y-x$ and hence the order is completely determined by $V^{+}=\{x \in V ; x \geq 0\}$ positive cone of V.

Furthermore, for $P \subset V$ there is a partial order on V such that $P=V^{+}$if and only if

$$
\begin{gathered}
P \cap(-P)=\{0\} \\
P+P \subset P \\
c \geq 0 \Rightarrow c P \subset P
\end{gathered}
$$

Partial Order in \mathbb{R}^{n} and Negative Cones

We consider partial orders in \mathbb{R}^{n} corresponding to negative cones $\left(\mathbb{R}^{n}\right)_{\overline{\mathcal{B}}}^{-}$generated by a set of fixed basis vectors $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$, i.e. $\left(\mathbb{R}^{n}\right)_{\mathcal{B}}^{-}=\left\{\sum_{i=1}^{n} c_{i} v_{i} ; c_{i} \geq 0\right\}$.

In \mathbb{R}^{2} we will use linearly independent vectors u, v as a generating set for the negative cone. In this case the boundary of the negative cone is a broken line.

For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ we define F on \mathbb{R}^{n} as

where μ is the Lebesgue measure on \mathbb{R}^{n} and $y \leq x$ represents the negative cone at x with respect to partial order on \mathbb{R}^{n}

Partial Order in \mathbb{R}^{n} and Negative Cones

We consider partial orders in \mathbb{R}^{n} corresponding to negative cones $\left(\mathbb{R}^{n}\right)_{\overline{\mathcal{B}}}^{-}$generated by a set of fixed basis vectors $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$, i.e. $\left(\mathbb{R}^{n}\right)_{\mathcal{B}}^{-}=\left\{\sum_{i=1}^{n} c_{i} v_{i} ; c_{i} \geq 0\right\}$.

In \mathbb{R}^{2} we will use linearly independent vectors u, v as a generating set for the negative cone. In this case the boundary of the negative cone is a broken line.

For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ we define F on \mathbb{R}^{n} as

where μ is the Lebesgue measure on \mathbb{R}^{n} and $y \leq x$ represents the negative cone at x with respect to partial order on \mathbb{R}^{n}

Partial Order in \mathbb{R}^{n} and Negative Cones

We consider partial orders in \mathbb{R}^{n} corresponding to negative cones $\left(\mathbb{R}^{n}\right)_{\overline{\mathcal{B}}}^{-}$generated by a set of fixed basis vectors $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$, i.e. $\left(\mathbb{R}^{n}\right)_{\mathcal{B}}^{-}=\left\{\sum_{i=1}^{n} c_{i} v_{i} ; c_{i} \geq 0\right\}$.

In \mathbb{R}^{2} we will use linearly independent vectors u, v as a generating set for the negative cone. In this case the boundary of the negative cone is a broken line.

For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ we define F on \mathbb{R}^{n} as

$$
F(x)=\int_{y \leq x} f(y) d \mu
$$

where μ is the Lebesgue measure on \mathbb{R}^{n} and $y \leq x$ represents the negative cone at x with respect to partial order on \mathbb{R}^{n}.

Partial Order in \mathbb{R}^{n} and Negative Cones

$$
F(x)=\int_{y \leq x} f(y) d \mu
$$

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

If \leq is the natural order on \mathbb{R}, for an integrable function f and

$$
F(x)=\int_{y \leq x} f(y) d t
$$

we have $F^{\prime}=f$ almost everywhere. Note that in this case F is absolutely continuous.

Can we have a "similar result" in higher dimensions?

We start from two dimensions. Let f be an integrable function on \mathbb{R}^{2} (with $\int|f|<\infty$) with respect to Lebesgue measure and define $F(x)=\int_{y \leq x} f(y) d \mu$ using the partial order made by u, v.

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

If \leq is the natural order on \mathbb{R}, for an integrable function f and

$$
F(x)=\int_{y \leq x} f(y) d t
$$

we have $F^{\prime}=f$ almost everywhere. Note that in this case F is absolutely continuous.

Can we have a "similar result" in higher dimensions?

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

If \leq is the natural order on \mathbb{R}, for an integrable function f and

$$
F(x)=\int_{y \leq x} f(y) d t
$$

we have $F^{\prime}=f$ almost everywhere. Note that in this case F is absolutely continuous.

Can we have a "similar result" in higher dimensions?

We start from two dimensions. Let f be an integrable function on \mathbb{R}^{2} (with $\int|f|<\infty$) with respect to Lebesgue measure and define $F(x)=\int_{y \leq x} f(y) d \mu$ using the partial order made by u, v.

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Define $V_{t, s}(x)$ as the average of f over the parallelogram centered at x, sides of length t, s and directions u, v.

Note that the area of the parallelogram made with vectors tu, sv is equal to $|\operatorname{det}(t u, s v)|=t s|\operatorname{det}(u, v)|$. Then

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Define $V_{t, s}(x)$ as the average of f over the parallelogram centered at x, sides of length t, s and directions u, v.

Note that the area of the parallelogram made with vectors $t u, s v$ is equal to $|\operatorname{det}(t u, s v)|=t s|\operatorname{det}(u, v)|$. Then

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Define $V_{t, s}(x)$ as the average of f over the parallelogram centered at x, sides of length t, s and directions u, v.

Note that the area of the parallelogram made with vectors $t u, s v$ is equal to $|\operatorname{det}(t u, s v)|=t s|\operatorname{det}(u, v)|$. Then

$$
\begin{aligned}
V_{t, s}(x)=\frac{1}{t s|\operatorname{det}(u, v)|} & {\left[F\left(x+\frac{t}{2} u+\frac{s}{2} v\right)-F\left(x-\frac{t}{2} u+\frac{s}{2} v\right)\right.} \\
& \left.-F\left(x+\frac{t}{2} u-\frac{s}{2} v\right)+F\left(x-\frac{t}{2} u-\frac{s}{2} v\right)\right]
\end{aligned}
$$

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Likewise, for n dimensions by a geometric argument and induction over n we get the following averaging formula for f

$$
\begin{aligned}
V_{t_{1}, \ldots, t_{n}}(x)= & \frac{1}{t_{1} \ldots t_{n}\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|} \\
& \sum_{\alpha \in\left\{\frac{-1}{2}, \frac{1}{2}\right\}^{n}} \operatorname{sgn}\left(\alpha_{1} \ldots \alpha_{n}\right) F\left(x+\alpha_{1} t_{1} v_{1}+\ldots \alpha_{n} t_{n} v_{n}\right)
\end{aligned}
$$

In special case, to get a symmetric neighborhood of x we can let $t_{1}=\cdots=t_{n}=t$ to get the average of f over P_{t}, the parallelograms with sides of length t centered at x

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Likewise, for n dimensions by a geometric argument and induction over n we get the following averaging formula for f

$$
\begin{aligned}
V_{t_{1}, \ldots, t_{n}}(x)= & \frac{1}{t_{1} \ldots t_{n}\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|} \\
& \sum_{\alpha \in\left\{\frac{-1}{2}, \frac{1}{2}\right\}^{n}} \operatorname{sgn}\left(\alpha_{1} \ldots \alpha_{n}\right) F\left(x+\alpha_{1} t_{1} v_{1}+\ldots \alpha_{n} t_{n} v_{n}\right)
\end{aligned}
$$

In special case, to get a symmetric neighborhood of x we can let $t_{1}=\cdots=t_{n}=t$ to get the average of f over P_{t}, the parallelograms with sides of length t centered at x

$$
V_{t, \ldots, t}(x)=\frac{1}{t^{n}\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|} \int_{P_{t}} f d \mu=\frac{1}{\mu\left(P_{t}\right)} \int_{P_{t}} f d \mu .
$$

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Now by averaging over this infinitesimal symmetric neighborhood of x and applying the Lebesgue Differentiation Theorem we have

Theorem

Let \leq be an order in \mathbb{R}^{n} made from the positive cone of v_{1}, \ldots, v_{n} and for $f \in L^{1}\left(\mathbb{R}^{n}\right)$ define

$$
F(x)=\int_{y \leq x} f(y) d \mu
$$

Then for almost every x we have

$$
f(x)=\lim _{t \rightarrow 0} V_{t, \ldots, t}(x)
$$

Cone Differentiation Th. (G.A., M. Latifi- Jebelli 2016)

Theorem

Let the hypothesis of the previous theorem be satisfied and f be continuous. Then

$$
f(x)=\frac{1}{\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|} \frac{\partial}{\partial v_{1}} \ldots \frac{\partial}{\partial v_{n}} F(x),
$$

where $\frac{\partial}{\partial v_{j}}$ denotes the directional derivative along vector v_{j}.

How does this help us with the inversion of the broken-ray or conical Radon transforms?

Cone Differentiation Th. (G.A., M. Latifi-Jebelli 2016)

Theorem

Let the hypothesis of the previous theorem be satisfied and f be continuous. Then

$$
f(x)=\frac{1}{\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|} \frac{\partial}{\partial v_{1}} \ldots \frac{\partial}{\partial v_{n}} F(x),
$$

where $\frac{\partial}{\partial v_{j}}$ denotes the directional derivative along vector v_{j}.

How does this help us with the inversion of the broken-ray or conical Radon transforms?

Inversion of BRT in 2D (G.A., M. Latifi-Jebelli 2016)

Assume that $L(x, y)$ is the unique broken ray with vertex at (x, y) and axis of symmetry α, where $\alpha=\left(\alpha_{x}, \alpha_{y}\right)$ is a unit vector parallel to $\frac{u+v}{2}$. Also, let β be the angle between u and α.
Theorem
Let \mathcal{R} be the broken ray transform on $L^{1}\left(\mathbb{R}^{2}\right)$ defined by

Then

is the integral of f over the negative cone at (x, y). Hence

Inversion of BRT in 2D (G.A., M. Latifi-Jebelli 2016)

Assume that $L(x, y)$ is the unique broken ray with vertex at (x, y) and axis of symmetry α, where $\alpha=\left(\alpha_{x}, \alpha_{y}\right)$ is a unit vector parallel to $\frac{u+v}{2}$. Also, let β be the angle between u and α.

Theorem

Let \mathcal{R} be the broken ray transform on $L^{1}\left(\mathbb{R}^{2}\right)$ defined by:

$$
(\mathcal{R} f)(x, y)=\int_{L(x, y)} f d L
$$

Then

$$
F(x, y)=\int_{0}^{\infty}(\mathcal{R} f)\left(x+t \alpha_{x}, y+t \alpha_{y}\right) \sin \beta d t
$$

is the integral of f over the negative cone at (x, y). Hence

$$
f(x, y)=\frac{1}{|\operatorname{det}(u, v)|} \frac{\partial}{\partial u} \frac{\partial}{\partial v} \int_{0}^{\infty}(\mathcal{R} f)\left(x+t \alpha_{x}, y+t \alpha_{y}\right) \sin \beta d t
$$

Polyhedral CRT in \mathbb{R}^{n} (G.A., M. Latifi-Jebelli 2016)

For any $x \in \mathbb{R}^{n}$, we define $(\mathcal{R} f)(x)$ to be integral over the boundary of polyhedral cone C generated by unit basis vectors u_{1}, \ldots, u_{n} starting from x, i.e.

$$
(\mathcal{R} f)(x)=\int_{\partial C} f d S
$$

where $d S$ is $n-1$ dimensional Lebesgue measure on ∂C.
Assume that $\left\|u_{i}-u_{j}\right\|$ is constant for any i and j
Define $w=\frac{u_{1}+\cdots+u_{n}}{\left\|u_{1}+\cdots+u_{n}\right\|}$.
Let $X_{i}=\operatorname{span}\left(u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{n}\right\rangle$ be the hyperplane
containing a face of polyhedral cone and define y_{i} to be a unit vector in X_{i}^{\perp}

Polyhedral CRT in \mathbb{R}^{n} (G.A., M. Latifi-Jebelli 2016)

For any $x \in \mathbb{R}^{n}$, we define $(\mathcal{R} f)(x)$ to be integral over the boundary of polyhedral cone C generated by unit basis vectors u_{1}, \ldots, u_{n} starting from x, i.e.

$$
(\mathcal{R} f)(x)=\int_{\partial C} f d S
$$

where $d S$ is $n-1$ dimensional Lebesgue measure on ∂C.
Assume that $\left\|u_{i}-u_{j}\right\|$ is constant for any i and j.
Define $w=\frac{u_{1}+\cdots+u_{n}}{\left\|u_{1}+\cdots+u_{n}\right\|}$
Let $X_{i}=\operatorname{span}\left\langle u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{n}\right\rangle$ be the hyperplane
containing a face of polyhedral cone and define y_{i} to be a unit vector in X_{i}^{+}

Polyhedral CRT in \mathbb{R}^{n} (G.A., M. Latifi-Jebelli 2016)

For any $x \in \mathbb{R}^{n}$, we define $(\mathcal{R} f)(x)$ to be integral over the boundary of polyhedral cone C generated by unit basis vectors u_{1}, \ldots, u_{n} starting from x, i.e.

$$
(\mathcal{R} f)(x)=\int_{\partial C} f d S
$$

where $d S$ is $n-1$ dimensional Lebesgue measure on ∂C.
Assume that $\left\|u_{i}-u_{j}\right\|$ is constant for any i and j.
Define $w=\frac{u_{1}+\cdots+u_{n}}{\left\|u_{1}+\cdots+u_{n}\right\|}$.
Let $X_{i}=\operatorname{span}\left\langle u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{n}\right\rangle$ be the hyperplane
containing a face of polyhedral cone and define y_{i} to be a unit vector in X_{i}^{+}

Polyhedral CRT in \mathbb{R}^{n} (G.A., M. Latifi-Jebelli 2016)

For any $x \in \mathbb{R}^{n}$, we define $(\mathcal{R} f)(x)$ to be integral over the boundary of polyhedral cone C generated by unit basis vectors u_{1}, \ldots, u_{n} starting from x, i.e.

$$
(\mathcal{R} f)(x)=\int_{\partial C} f d S
$$

where $d S$ is $n-1$ dimensional Lebesgue measure on ∂C.
Assume that $\left\|u_{i}-u_{j}\right\|$ is constant for any i and j.
Define $w=\frac{u_{1}+\cdots+u_{n}}{\left\|u_{1}+\cdots+u_{n}\right\|}$.
Let $X_{i}=\operatorname{span}\left\langle u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{n}\right\rangle$ be the hyperplane containing a face of polyhedral cone and define y_{i} to be a unit vector in X_{i}^{\perp}.

Polyhedral CRT in \mathbb{R}^{n} (G.A., M. Latifi-Jebelli 2016)

Theorem

Let \mathcal{R}, w, y_{j} be defined as above, then

$$
F(x)=\int_{0}^{\infty}(\mathcal{R} f)(x+w t)\left\langle w, y_{1}\right\rangle d t
$$

is the integral of f over the polyhedral cone generated by $u_{1}, \ldots u_{n}$ starting from x. Hence

$$
f(x)=\frac{1}{\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|} \frac{\partial}{\partial v_{1}} \ldots \frac{\partial}{\partial v_{n}} \int_{0}^{\infty}(\mathcal{R} f)(x+w t)\left\langle w, y_{1}\right\rangle d t
$$

Range Description (G.A., M. Latifi-Jebelli 2016)

Existence of f such that $F(x)=\int_{y \leq x} f(y) d \mu$.
What is the necessary and sufficient condition for a function F to be a cone integral of another function $f \geq 0$ with respect to a given order structure in \mathbb{R}^{n} ?

In case of $n=1$ the answer was provided by absolute continuity.
We apply the Radon Nikodym Theorem to get the desired description of F. For a given F, we construct a corresponding measure ν that implies existence of f

We use the above conditions to obtain a range description for CRT

Range Description (G.A., M. Latifi-Jebelli 2016)

Existence of f such that $F(x)=\int_{y \leq x} f(y) d \mu$.
What is the necessary and sufficient condition for a function F to be a cone integral of another function $f \geq 0$ with respect to a given order structure in \mathbb{R}^{n} ?

In case of $n=1$ the answer was provided by absolute continuity.
We apply the Radon Nikodym Theorem to get the desired description of F. For a given F, we construct a corresponding measure ν that implies existence of f

We use the above conditions to obtain a range description for CRT

Range Description (G.A., M. Latifi-Jebelli 2016)

Existence of f such that $F(x)=\int_{y \leq x} f(y) d \mu$.
What is the necessary and sufficient condition for a function F to be a cone integral of another function $f \geq 0$ with respect to a given order structure in \mathbb{R}^{n} ?

In case of $n=1$ the answer was provided by absolute continuity.
We apply the Radon Nikodym Theorem to get the desired description of F. For a given F, we construct a corresponding measure ν that implies existence of f

We use the above conditions to obtain a range description for CRT

Range Description (G.A., M. Latifi-Jebelli 2016)

Existence of f such that $F(x)=\int_{y \leq x} f(y) d \mu$.
What is the necessary and sufficient condition for a function F to be a cone integral of another function $f \geq 0$ with respect to a given order structure in \mathbb{R}^{n} ?

In case of $n=1$ the answer was provided by absolute continuity.
We apply the Radon Nikodym Theorem to get the desired description of F. For a given F, we construct a corresponding measure ν that implies existence of f.

We use the above conditions to obtain a range description for CRT

Range Description (G.A., M. Latifi-Jebelli 2016)

Existence of f such that $F(x)=\int_{y \leq x} f(y) d \mu$.
What is the necessary and sufficient condition for a function F to be a cone integral of another function $f \geq 0$ with respect to a given order structure in \mathbb{R}^{n} ?

In case of $n=1$ the answer was provided by absolute continuity.
We apply the Radon Nikodym Theorem to get the desired description of F. For a given F, we construct a corresponding measure ν that implies existence of f.

We use the above conditions to obtain a range description for CRT.

Thanks for Your Attention!

