New reconstructions from cone Radon transform

Victor Palamodov
Tel Aviv University

March 30, 2017

- Trajectories of single-scattered photons with fixed income and outcome energies in Compton camera form a cone of rotation:

- A spherical cone in an Euclidean space E^{3} with apex at the origin can be written in the form

$$
C(\lambda)=\left\{x \in E^{3}: \lambda x_{1}=s\right\}, s=\sqrt{x_{2}^{2}+x_{3}^{2}} .
$$

The line $s=0$ is the axis and $\lambda=\tan \psi$ where ψ is the opening of the cone. In particular $C(\infty)=\left\{x: x_{1}=0\right\}$.

- A spherical cone in an Euclidean space E^{3} with apex at the origin can be written in the form

$$
C(\lambda)=\left\{x \in E^{3}: \lambda x_{1}=s\right\}, s=\sqrt{x_{2}^{2}+x_{3}^{2}}
$$

The line $s=0$ is the axis and $\lambda=\tan \psi$ where ψ is the opening of the cone. In particular $C(\infty)=\left\{x: x_{1}=0\right\}$.

- The integral

$$
g_{C}(y)=\cos \psi \int_{x \in C(\lambda)} f(y+x) w(x) \mathrm{d} x_{2} \mathrm{~d} x_{3}, y \in E^{3}
$$

is called weighted cone Radon or Compton transform.

- A spherical cone in an Euclidean space E^{3} with apex at the origin can be written in the form

$$
C(\lambda)=\left\{x \in E^{3}: \lambda x_{1}=s\right\}, s=\sqrt{x_{2}^{2}+x_{3}^{2}}
$$

The line $s=0$ is the axis and $\lambda=\tan \psi$ where ψ is the opening of the cone. In particular $C(\infty)=\left\{x: x_{1}=0\right\}$.

- The integral

$$
g_{C}(y)=\cos \psi \int_{x \in C(\lambda)} f(y+x) w(x) \mathrm{d} x_{2} \mathrm{~d} x_{3}, y \in E^{3}
$$

is called weighted cone Radon or Compton transform.

- If $w(x)=|x|^{-k}$ we call this integral regular in the case $k=0,1$ and singular if $k=2$.
- A spherical cone in an Euclidean space E^{3} with apex at the origin can be written in the form

$$
C(\lambda)=\left\{x \in E^{3}: \lambda x_{1}=s\right\}, s=\sqrt{x_{2}^{2}+x_{3}^{2}}
$$

The line $s=0$ is the axis and $\lambda=\tan \psi$ where ψ is the opening of the cone. In particular $C(\infty)=\left\{x: x_{1}=0\right\}$.

- The integral

$$
g_{C}(y)=\cos \psi \int_{x \in C(\lambda)} f(y+x) w(x) \mathrm{d} x_{2} \mathrm{~d} x_{3}, y \in E^{3}
$$

is called weighted cone Radon or Compton transform.

- If $w(x)=|x|^{-k}$ we call this integral regular in the case $k=0,1$ and singular if $k=2$.
- Any regular integral is well defined for any continuous f defined on E^{3} vanishing for $x_{1}>m$ for some m.
- A spherical cone in an Euclidean space E^{3} with apex at the origin can be written in the form

$$
C(\lambda)=\left\{x \in E^{3}: \lambda x_{1}=s\right\}, s=\sqrt{x_{2}^{2}+x_{3}^{2}}
$$

The line $s=0$ is the axis and $\lambda=\tan \psi$ where ψ is the opening of the cone. In particular $C(\infty)=\left\{x: x_{1}=0\right\}$.

- The integral

$$
g_{C}(y)=\cos \psi \int_{x \in C(\lambda)} f(y+x) w(x) \mathrm{d} x_{2} \mathrm{~d} x_{3}, y \in E^{3}
$$

is called weighted cone Radon or Compton transform.

- If $w(x)=|x|^{-k}$ we call this integral regular in the case $k=0,1$ and singular if $k=2$.
- Any regular integral is well defined for any continuous f defined on E^{3} vanishing for $x_{1}>m$ for some m.
- The singular integral is not well defined if $f(y) \neq 0$.
- A spherical cone in an Euclidean space E^{3} with apex at the origin can be written in the form

$$
C(\lambda)=\left\{x \in E^{3}: \lambda x_{1}=s\right\}, s=\sqrt{x_{2}^{2}+x_{3}^{2}}
$$

The line $s=0$ is the axis and $\lambda=\tan \psi$ where ψ is the opening of the cone. In particular $C(\infty)=\left\{x: x_{1}=0\right\}$.

- The integral

$$
g_{C}(y)=\cos \psi \int_{x \in C(\lambda)} f(y+x) w(x) \mathrm{d} x_{2} \mathrm{~d} x_{3}, y \in E^{3}
$$

is called weighted cone Radon or Compton transform.

- If $w(x)=|x|^{-k}$ we call this integral regular in the case $k=0,1$ and singular if $k=2$.
- Any regular integral is well defined for any continuous f defined on E^{3} vanishing for $x_{1}>m$ for some m.
- The singular integral is not well defined if $f(y) \neq 0$.
- Analytic inversion of the regular and singular monochrome (one opening) cone Radon transforms is in the focus of this talk.

Single-scattering tomography

- The realistic model (SPSF) for single-scattering optical tomography based on the photometric law of scattered radiation modeled by the singular cone transform.

Polychrome reconstructions
 (many openings)

- Cree and Bones 1994 proposed reconstruction formulae from data of regular cone transform with apices restricted to a plane orthogonal to the axis.

Polychrome reconstructions (many openings)

- Cree and Bones 1994 proposed reconstruction formulae from data of regular cone transform with apices restricted to a plane orthogonal to the axis.
- Analytic reconstructions from the cone transform with restricted apex were obtained by Nguen and Truong 2002, Smith 2005, Nguen, Truong, Grangeat 2005, Maxim et al 2009, Maxim 2014.

Polychrome reconstructions (many openings)

- Cree and Bones 1994 proposed reconstruction formulae from data of regular cone transform with apices restricted to a plane orthogonal to the axis.
- Analytic reconstructions from the cone transform with restricted apex were obtained by Nguen and Truong 2002, Smith 2005, Nguen, Truong, Grangeat 2005, Maxim et al 2009, Maxim 2014.
- Haltmeier 2014, Terzioglu 2015, Moon 2016, Jung and Moon 2016 gave inversion formulae for arbitrary dimension n.

Polychrome reconstructions (many openings)

- Cree and Bones 1994 proposed reconstruction formulae from data of regular cone transform with apices restricted to a plane orthogonal to the axis.
- Analytic reconstructions from the cone transform with restricted apex were obtained by Nguen and Truong 2002, Smith 2005, Nguen, Truong, Grangeat 2005, Maxim et al 2009, Maxim 2014.
- Haltmeier 2014, Terzioglu 2015, Moon 2016, Jung and Moon 2016 gave inversion formulae for arbitrary dimension n.
- Jung and Moon 2016 proposed the scheme for collecting non redunded data from a line of detectors and rotating axis.

Monochromatic reconstructions

 (one opening)- Basko et al 1998 proposed a numerical method based on developing f in spherical harmonics from cone integrals with swinging axis.

Monochromatic reconstructions

(one opening)

- Basko et al 1998 proposed a numerical method based on developing f in spherical harmonics from cone integrals with swinging axis.
- X-ray transform for a family of broken rays was applied by Eskin 2004 for study of inverse problems for the Schrödinger equation.

Monochromatic reconstructions

(one opening)

- Basko et al 1998 proposed a numerical method based on developing f in spherical harmonics from cone integrals with swinging axis.
- X-ray transform for a family of broken rays was applied by Eskin 2004 for study of inverse problems for the Schrödinger equation.
- Florescu, Markel and Schotland 2010, 2011 studied reconstruction of a function on a plane from the broken ray integral transform.

Monochromatic reconstructions

(one opening)

- Basko et al 1998 proposed a numerical method based on developing f in spherical harmonics from cone integrals with swinging axis.
- X-ray transform for a family of broken rays was applied by Eskin 2004 for study of inverse problems for the Schrödinger equation.
- Florescu, Markel and Schotland 2010, 2011 studied reconstruction of a function on a plane from the broken ray integral transform.
- Nguen and Truong 2011 and Ambartsoumian 2012 studied reconstruction of a function on a disc from data of V-line Radon transform.

Monochromatic reconstructions

(one opening)

- Basko et al 1998 proposed a numerical method based on developing f in spherical harmonics from cone integrals with swinging axis.
- X-ray transform for a family of broken rays was applied by Eskin 2004 for study of inverse problems for the Schrödinger equation.
- Florescu, Markel and Schotland 2010, 2011 studied reconstruction of a function on a plane from the broken ray integral transform.
- Nguen and Truong 2011 and Ambartsoumian 2012 studied reconstruction of a function on a disc from data of V-line Radon transform.
- Katsevich and Krylov 2013 studied reconstruction of the attenuation coefficient from of broken ray transform with curved lines of detectors.

Monochromatic reconstructions

(one opening)

- Basko et al 1998 proposed a numerical method based on developing f in spherical harmonics from cone integrals with swinging axis.
- X-ray transform for a family of broken rays was applied by Eskin 2004 for study of inverse problems for the Schrödinger equation.
- Florescu, Markel and Schotland 2010, 2011 studied reconstruction of a function on a plane from the broken ray integral transform.
- Nguen and Truong 2011 and Ambartsoumian 2012 studied reconstruction of a function on a disc from data of V-line Radon transform.
- Katsevich and Krylov 2013 studied reconstruction of the attenuation coefficient from of broken ray transform with curved lines of detectors.
- Gouia-Zarrad and Ambartsoumian 2014 found the reconstruction formula for the regular cone transform in the half-space with free apex.

Cone transform with free apex

- Cone Radon integral equation can written in the convolution form

$$
\begin{equation*}
g=|x|^{-k} \delta_{-c} * f \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta_{-C}(\varphi) & =\int_{C} \varphi \mathrm{~d} S=\cos ^{-1} \psi \iint \varphi\left(-\lambda s, x_{2}, x_{3}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} \\
s & =\sqrt{x_{2}^{2}+x_{3}^{2}} .
\end{aligned}
$$

is a tempered distribution in E^{3}.

Cone transform with free apex

- Cone Radon integral equation can written in the convolution form

$$
\begin{equation*}
g=|x|^{-k} \delta_{-c} * f \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta_{-C}(\varphi) & =\int_{C} \varphi \mathrm{~d} S=\cos ^{-1} \psi \iint \varphi\left(-\lambda s, x_{2}, x_{3}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} \\
s & =\sqrt{x_{2}^{2}+x_{3}^{2}} .
\end{aligned}
$$

is a tempered distribution in E^{3}.

- The solution f of (1) defined on $\left\{x_{1} \geq 0\right\}$ is unique if it vanishes for $x_{1}>m$ for some $m>0$.

Cone transform with free apex

- Cone Radon integral equation can written in the convolution form

$$
\begin{equation*}
g=|x|^{-k} \delta_{-c} * f \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta_{-C}(\varphi) & =\int_{C} \varphi \mathrm{~d} S=\cos ^{-1} \psi \iint \varphi\left(-\lambda s, x_{2}, x_{3}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} \\
s & =\sqrt{x_{2}^{2}+x_{3}^{2}} .
\end{aligned}
$$

is a tempered distribution in E^{3}.

- The solution f of (1) defined on $\left\{x_{1} \geq 0\right\}$ is unique if it vanishes for $x_{1}>m$ for some $m>0$.
- We focus on the case $n=3$ and use the notations

$$
\Delta_{0}=\delta_{-C}, \Delta_{1}=|x|^{-1} \delta_{-C}
$$

Support of the convolution

- For a function f on E^{n} vanishing for $x_{1}>m$ for some m, the convolution $g=\Delta_{k} * f$ is well defined and $\operatorname{supp} \Delta_{k} * f \subset \operatorname{supp} f-C$.

Inversion of regular transforms

- Case $k=0$. The solution of

$$
\Delta_{0} * f_{0}=g_{0}
$$

can be found in the form

$$
\begin{gathered}
f_{0}(x)=\frac{1}{2 \pi \cos ^{3} \psi} \square^{2} \Delta_{1} * \Theta_{1} * g_{0} \\
=\frac{1}{2 \pi \cos ^{3} \psi} \square^{2} \int_{t \in C}\left(\int_{x_{1}}^{\infty} g_{0}\left(y-t_{1}, x_{2}-t_{2}, x_{3}-t_{3}\right) \mathrm{d} y\right) \frac{\mathrm{d} S}{|t|}
\end{gathered}
$$

and

Inversion of regular transforms

- Case $k=0$. The solution of

$$
\Delta_{0} * f_{0}=g_{0}
$$

can be found in the form

$$
\begin{gather*}
f_{0}(x)=\frac{1}{2 \pi \cos ^{3} \psi} \square^{2} \Delta_{1} * \Theta_{1} * g_{0} \tag{2}\\
=\frac{1}{2 \pi \cos ^{3} \psi} \square^{2} \int_{t \in C}\left(\int_{x_{1}}^{\infty} g_{0}\left(y-t_{1}, x_{2}-t_{2}, x_{3}-t_{3}\right) \mathrm{d} y\right) \frac{\mathrm{d} S}{|t|}
\end{gather*}
$$

and

$$
\square=\frac{\partial^{2}}{\partial x_{1}^{2}}-\lambda^{2}\left(\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right) .
$$

- Case $k=1$. The solution of

$$
\begin{equation*}
\Delta_{1} * f_{1}=g_{1} \tag{3}
\end{equation*}
$$

reads

$$
\begin{gather*}
f_{1}(x)=\frac{1}{2 \pi \cos ^{3} \psi} \square^{2} \Delta_{0} * \Theta_{1} * g_{1} \tag{4}\\
=\frac{1}{2 \pi \cos ^{3} \psi} \square^{2} \int_{t \in C} \int_{x_{1}}^{\infty} g_{1}\left(y-t_{1}, x_{2}-t_{2}, x_{3}-t_{3}\right) \mathrm{d} y \mathrm{~d} S .
\end{gather*}
$$

Conclusion: Inversion of any of two regular cone transform is given by the another cone transform followed (or preceded) by the 4 order differential operator and additional integration from x_{1} to ∞ in the vertical variable. No Fourier transform etc. is necessary.

Support of the solution

- Corollary For any function f with support in E_{m} for some m, we have

$$
\operatorname{supp} f \subset \operatorname{supp} \Delta_{k} * f-V, \quad k=0,1
$$

where V is the convex hull of C.

Proofs

- Distributions Δ_{0} and Δ_{1} are homogeneous of order 2 and 1. Fourier transforms are equal to (V.P. 2016, P.140)

$$
\begin{aligned}
& \qquad \begin{array}{l}
\hat{\Delta}_{0}(p)=-\frac{1}{2 \pi \cos ^{2} \psi}\left|p_{1}\right|\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)^{-3 / 2}, \\
\hat{\Delta}_{1}(p)=-\frac{2 i}{\cos \psi} \operatorname{sgn} p_{1}\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)^{-1 / 2} \\
\text { for } p_{1}^{2}>\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right) .
\end{array}
\end{aligned}
$$

Proofs

- Distributions Δ_{0} and Δ_{1} are homogeneous of order 2 and 1. Fourier transforms are equal to (V.P. 2016, P.140)

$$
\begin{aligned}
& \hat{\Delta}_{0}(p)=-\frac{1}{2 \pi \cos ^{2} \psi}\left|p_{1}\right|\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)^{-3 / 2} \\
& \hat{\Delta}_{1}(p)=-\frac{2 i}{\cos \psi} \operatorname{sgn}_{1}\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)^{-1 / 2}
\end{aligned}
$$

for $p_{1}^{2}>\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)$.

- Both have analytical continuation at $H_{+}=\left\{p \in \mathbb{C}^{3}: \operatorname{Im} p_{1} \geq 0\right\}$.
- The above calculations results

$$
2 \pi i \cos ^{3} \psi\left(p_{1}+i 0\right)^{-1}\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)^{2} \hat{\Delta}_{0}(p) \hat{\Delta}_{1}(p)=1
$$

since function $\left(p_{1}+i 0\right)^{-1}$ admits holomorphic continuation at H_{+}. This equation holds for all $p \in \mathbb{R}^{3}$.

- The above calculations results

$$
2 \pi i \cos ^{3} \psi\left(p_{1}+i 0\right)^{-1}\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)^{2} \hat{\Delta}_{0}(p) \hat{\Delta}_{1}(p)=1
$$

since function $\left(p_{1}+i 0\right)^{-1}$ admits holomorphic continuation at H_{+}. This equation holds for all $p \in \mathbb{R}^{3}$.

- Calculating the inverse Fourier transform we obtain

$$
F^{-1}\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)=-\frac{1}{4 \pi^{2}} \square \delta_{0}
$$

and

$$
F^{-1}\left(p_{1}+i 0\right)^{-1}=-2 \pi i \Theta_{1}
$$

where $\Theta_{1}=\theta\left(x_{1}\right) \delta_{0}\left(x_{2}, x_{3}\right), \theta(t)=1$ for $t<0$ and $\theta(t)=0$ for $t>0$.

- The above calculations results

$$
2 \pi i \cos ^{3} \psi\left(p_{1}+i 0\right)^{-1}\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)^{2} \hat{\Delta}_{0}(p) \hat{\Delta}_{1}(p)=1
$$

since function $\left(p_{1}+i 0\right)^{-1}$ admits holomorphic continuation at H_{+}. This equation holds for all $p \in \mathbb{R}^{3}$.

- Calculating the inverse Fourier transform we obtain

$$
F^{-1}\left(p_{1}^{2}-\lambda^{2}\left(p_{2}^{2}+p_{3}^{2}\right)\right)=-\frac{1}{4 \pi^{2}} \square \delta_{0}
$$

and

$$
F^{-1}\left(p_{1}+i 0\right)^{-1}=-2 \pi i \Theta_{1}
$$

where $\Theta_{1}=\theta\left(x_{1}\right) \delta_{0}\left(x_{2}, x_{3}\right), \theta(t)=1$ for $t<0$ and $\theta(t)=0$ for $t>0$.

- Finally

$$
\begin{equation*}
\cos ^{3} \psi \square^{2} \delta_{0} * \Theta_{1} * \Delta_{1} * \Delta_{0}=\delta_{0} \tag{5}
\end{equation*}
$$

where the convolutions of distributions Θ_{1}, Δ_{1} and $\square^{2} \delta_{0}$ are well defined and commute.

- Applying (5) to f_{0} gives

$$
f_{0}=\cos ^{3} \psi \square^{2} * \Delta_{1} * \Theta_{1} * \Delta_{0} * f_{0}=\cos ^{3} \psi \square^{2} * \Delta_{1} * \Theta_{1} * g_{0}
$$

which is equivalent to (2).

- Applying (5) to f_{0} gives

$$
f_{0}=\cos ^{3} \psi \square^{2} * \Delta_{1} * \Theta_{1} * \Delta_{0} * f_{0}=\cos ^{3} \psi \square^{2} * \Delta_{1} * \Theta_{1} * g_{0}
$$

which is equivalent to (2).

- Commuting factors in (5) yields

$$
f_{1}=\cos ^{3} \psi \square^{2} * \Delta_{0} * \Theta_{1} * \Delta_{1} * f_{1}=\cos ^{3} \psi \square^{2} * \Delta_{0} * \Theta_{1} * g_{1}
$$

and (4) follows.

- Applying (5) to f_{0} gives

$$
f_{0}=\cos ^{3} \psi \square^{2} * \Delta_{1} * \Theta_{1} * \Delta_{0} * f_{0}=\cos ^{3} \psi \square^{2} * \Delta_{1} * \Theta_{1} * g_{0}
$$

which is equivalent to (2).

- Commuting factors in (5) yields

$$
f_{1}=\cos ^{3} \psi \square^{2} * \Delta_{0} * \Theta_{1} * \Delta_{1} * f_{1}=\cos ^{3} \psi \square^{2} * \Delta_{0} * \Theta_{1} * g_{1}
$$

and (4) follows.

- Remark 1. Constant attenuation can be included in this method.
- Remark 2. Solution of (1) could be done in form $\hat{g}(p) / \hat{\Delta}_{k}(p)$ in the frequency domain. limplementation of this method supposes cutting out the "plumes" of g which causes the artifacts in the reconstruction as in the following picture

- Remark 2. Solution of (1) could be done in form $\hat{g}(p) / \hat{\Delta}_{k}(p)$ in the frequency domain. limplementation of this method supposes cutting out the "plumes" of g which causes the artifacts in the reconstruction as in the following picture

- which is due to the courtesy of Gouia-Zarrad, Ambartsoumian 2014.

Inversion of the singular cone transform

- Fix $\lambda>0$ and consider the singular integral transform

$$
\begin{equation*}
G(q, \theta)=\int_{C_{\lambda}(\theta)} f(q+x) \frac{\mathrm{d} S}{|x|^{2}}, \theta \in S^{2}, q \in E^{3} \tag{6}
\end{equation*}
$$

where $C_{\lambda}(\theta)$ means for the spherical cone with apex $x=0$, axis $\theta \in \mathrm{S}^{2}$ and opening λ.

Inversion of the singular cone transform

- Fix $\lambda>0$ and consider the singular integral transform

$$
\begin{equation*}
G(q, \theta)=\int_{C_{\lambda}(\theta)} f(q+x) \frac{\mathrm{d} S}{|x|^{2}}, \theta \in S^{2}, q \in E^{3} \tag{6}
\end{equation*}
$$

where $C_{\lambda}(\theta)$ means for the spherical cone with apex $x=0$, axis $\theta \in \mathrm{S}^{2}$ and opening λ.

- The integral is well defined if f is smooth and $f(q)=0$

Inversion of the singular cone transform

- Fix $\lambda>0$ and consider the singular integral transform

$$
\begin{equation*}
G(q, \theta)=\int_{C_{\lambda}(\theta)} f(q+x) \frac{\mathrm{d} S}{|x|^{2}}, \theta \in S^{2}, q \in E^{3} \tag{6}
\end{equation*}
$$

where $C_{\lambda}(\theta)$ means for the spherical cone with apex $x=0$, axis $\theta \in \mathrm{S}^{2}$ and opening λ.

- The integral is well defined if f is smooth and $f(q)=0$
- Theorem For any $\lambda>0$ and any set $Q \subset E^{3}$, an arbitrary function $f \in C^{2}$ with compact support can be recovered from data of integrals (6) for $q \in Q$ provided

Inversion of the singular cone transform

- Fix $\lambda>0$ and consider the singular integral transform

$$
\begin{equation*}
G(q, \theta)=\int_{C_{\lambda}(\theta)} f(q+x) \frac{\mathrm{d} S}{|x|^{2}}, \theta \in \mathrm{~S}^{2}, q \in E^{3} \tag{6}
\end{equation*}
$$

where $C_{\lambda}(\theta)$ means for the spherical cone with apex $x=0$, axis $\theta \in \mathrm{S}^{2}$ and opening λ.

- The integral is well defined if f is smooth and $f(q)=0$
- Theorem For any $\lambda>0$ and any set $Q \subset E^{3}$, an arbitrary function $f \in C^{2}$ with compact support can be recovered from data of integrals (6) for $q \in Q$ provided
- (i) any plane H which meets suppf has a common point with Q,

Inversion of the singular cone transform

- Fix $\lambda>0$ and consider the singular integral transform

$$
\begin{equation*}
G(q, \theta)=\int_{C_{\lambda}(\theta)} f(q+x) \frac{\mathrm{d} S}{|x|^{2}}, \theta \in \mathrm{~S}^{2}, q \in E^{3} \tag{6}
\end{equation*}
$$

where $C_{\lambda}(\theta)$ means for the spherical cone with apex $x=0$, axis $\theta \in \mathrm{S}^{2}$ and opening λ.

- The integral is well defined if f is smooth and $f(q)=0$
- Theorem For any $\lambda>0$ and any set $Q \subset E^{3}$, an arbitrary function $f \in C^{2}$ with compact support can be recovered from data of integrals (6) for $q \in Q$ provided
- (i) any plane H which meets suppf has a common point with Q,
- (ii) for any point $q \in Q$, there exists a unit vector $\theta(q)$ such that $\operatorname{supp} f \subset q+C_{\lambda}(\theta(q))$.

Compton cones with swinging axis

Proof

- Step 1. The singular ray transform

$$
\begin{equation*}
X f(q, \xi)=\int_{0}^{\infty} f(q+r \xi) \frac{\mathrm{d} r}{r}, \xi \in \mathrm{~S}^{2}, q \in Q \tag{7}
\end{equation*}
$$

is wel defined since f vanishes on Q since of (ii).

Proof

- Step 1. The singular ray transform

$$
\begin{equation*}
X f(q, \xi)=\int_{0}^{\infty} f(q+r \xi) \frac{\mathrm{d} r}{r}, \xi \in \mathrm{~S}^{2}, q \in Q \tag{7}
\end{equation*}
$$

is wel defined since f vanishes on Q since of (ii).

- By Fubini's theorem

$$
G(q, \theta)=\int_{\mathrm{S}_{\lambda}(\theta)} \int_{0}^{\infty} f(q+\xi(\sigma) r) \frac{\mathrm{d} r}{r} \mathrm{~d} \sigma=\int_{\mathrm{S}_{\lambda}(\theta)} X f(q, \xi(\sigma)) \mathrm{d} \sigma
$$

where $\xi(\sigma)$ runs over the circle $S_{\lambda}(\theta)=C_{\lambda}(\theta) \cap S^{2}$.

Proof

- Step 1. The singular ray transform

$$
\begin{equation*}
X f(q, \xi)=\int_{0}^{\infty} f(q+r \xi) \frac{\mathrm{d} r}{r}, \xi \in \mathrm{~S}^{2}, q \in Q \tag{7}
\end{equation*}
$$

is wel defined since f vanishes on Q since of (ii).

- By Fubini's theorem

$$
G(q, \theta)=\int_{\mathrm{S}_{\lambda}(\theta)} \int_{0}^{\infty} f(q+\xi(\sigma) r) \frac{\mathrm{d} r}{r} \mathrm{~d} \sigma=\int_{\mathrm{S}_{\lambda}(\theta)} X f(q, \xi(\sigma)) \mathrm{d} \sigma
$$

where $\xi(\sigma)$ runs over the circle $S_{\lambda}(\theta)=C_{\lambda}(\theta) \cap S^{2}$.

- Circles $\mathrm{S}_{\lambda}(\theta)$ have the same radius $r=\lambda\left(1+\lambda^{2}\right)^{-1 / 2}$.

Proof

- Step 1. The singular ray transform

$$
\begin{equation*}
X f(q, \xi)=\int_{0}^{\infty} f(q+r \xi) \frac{\mathrm{d} r}{r}, \xi \in \mathrm{~S}^{2}, q \in Q \tag{7}
\end{equation*}
$$

is wel defined since f vanishes on Q since of (ii).

- By Fubini's theorem

$$
G(q, \theta)=\int_{\mathrm{S}_{\lambda}(\theta)} \int_{0}^{\infty} f(q+\xi(\sigma) r) \frac{\mathrm{d} r}{r} \mathrm{~d} \sigma=\int_{\mathrm{S}_{\lambda}(\theta)} X f(q, \xi(\sigma)) \mathrm{d} \sigma
$$

where $\xi(\sigma)$ runs over the circle $S_{\lambda}(\theta)=C_{\lambda}(\theta) \cap S^{2}$.

- Circles $\mathrm{S}_{\lambda}(\theta)$ have the same radius $r=\lambda\left(1+\lambda^{2}\right)^{-1 / 2}$.
- The planes containing these circles are tangent to the central ball B of radius $\rho=\left(1+\lambda^{2}\right)^{-1 / 2}$.

Step 2: Nongeodesic Funk transform

- Theorem For any $\rho, 0 \leq \rho<1, \alpha \in E,|\alpha| \leq 1$, an arbitrary function $g \in C^{2}\left(S^{2}\right)$ can be reconstructed from data of integrals

$$
\begin{equation*}
\Gamma(\theta)=\int_{\xi \in \mathrm{S}^{2},\langle\xi-\alpha, \theta\rangle=\rho} g(\xi) \mathrm{d} \sigma, \theta \in \mathrm{~S}^{2} \tag{8}
\end{equation*}
$$

- Theorem For any $\rho, 0 \leq \rho<1, \alpha \in E,|\alpha| \leq 1$, an arbitrary function $g \in C^{2}\left(S^{2}\right)$ can be reconstructed from data of integrals

$$
\begin{equation*}
\Gamma(\theta)=\int_{\xi \in \mathrm{S}^{2},\langle\xi-\alpha, \theta\rangle=\rho} g(\xi) \mathrm{d} \sigma, \theta \in \mathrm{~S}^{2} \tag{8}
\end{equation*}
$$

- by

$$
\begin{equation*}
g(\xi)=-\frac{|\xi-\alpha|^{2}}{2 \pi^{2}\left(|\xi-\alpha|^{2}-\rho^{2}\right)^{1 / 2}} \int_{\mathrm{S}^{2}} \frac{\Gamma(\theta)}{(\langle\xi-\alpha, \theta\rangle-\rho)^{2}} \mathrm{~d} S \tag{9}
\end{equation*}
$$

provided there exists a vector $\theta_{0} \in S^{2}$ such that suppg $\subset\left\{\xi \in \mathrm{S}^{2}:\left\langle\xi-\alpha, \theta_{0}\right\rangle \geq \rho\right\}$.

- Theorem For any $\rho, 0 \leq \rho<1, \alpha \in E,|\alpha| \leq 1$, an arbitrary function $g \in C^{2}\left(S^{2}\right)$ can be reconstructed from data of integrals

$$
\begin{equation*}
\Gamma(\theta)=\int_{\xi \in \mathrm{S}^{2},\langle\xi-\alpha, \theta\rangle=\rho} g(\xi) \mathrm{d} \sigma, \theta \in \mathrm{~S}^{2} \tag{8}
\end{equation*}
$$

- by

$$
\begin{equation*}
g(\xi)=-\frac{|\xi-\alpha|^{2}}{2 \pi^{2}\left(|\xi-\alpha|^{2}-\rho^{2}\right)^{1 / 2}} \int_{\mathrm{S}^{2}} \frac{\Gamma(\theta)}{(\langle\xi-\alpha, \theta\rangle-\rho)^{2}} \mathrm{~d} S \tag{9}
\end{equation*}
$$

provided there exists a vector $\theta_{0} \in S^{2}$ such that suppg $\subset\left\{\xi \in \mathrm{S}^{2}:\left\langle\xi-\alpha, \theta_{0}\right\rangle \geq \rho\right\}$.

- The singular integral is regularized as follows

$$
\int_{\mathrm{S}^{2}} \frac{\Gamma(\theta)}{(\langle\xi-\alpha, \theta\rangle-\rho)^{2}} \mathrm{~d} S=-\Delta(\theta) \int_{\mathrm{S}^{2}} \Gamma(\theta) \log (\langle\xi-\alpha, \theta\rangle-\rho) \mathrm{d} S
$$

References

- Hermann Minkowski 1905 stated uniqueness of an even functions on S^{2} with given big circle integrals. For $n=2, \rho=0, \alpha=0$, The analytic reconstruction of an even function is due to Paul Funk's 1913 (student of David Hilbert).

References

- Hermann Minkowski 1905 stated uniqueness of an even functions on S^{2} with given big circle integrals. For $n=2, \rho=0, \alpha=0$, The analytic reconstruction of an even function is due to Paul Funk's 1913 (student of David Hilbert).
- Funk's result and his method encouraged Johann Radon 1917 for his famous reconstruction in the flat plane.

References

- Hermann Minkowski 1905 stated uniqueness of an even functions on S^{2} with given big circle integrals. For $n=2, \rho=0, \alpha=0$, The analytic reconstruction of an even function is due to Paul Funk's 1913 (student of David Hilbert).
- Funk's result and his method encouraged Johann Radon 1917 for his famous reconstruction in the flat plane.
- Generalizations for higher dimensions: S.Helgason 1959, 1990, 2006 and V.Semjanistyi 1961.

References

- Hermann Minkowski 1905 stated uniqueness of an even functions on S^{2} with given big circle integrals. For $n=2, \rho=0, \alpha=0$, The analytic reconstruction of an even function is due to Paul Funk's 1913 (student of David Hilbert).
- Funk's result and his method encouraged Johann Radon 1917 for his famous reconstruction in the flat plane.
- Generalizations for higher dimensions: S.Helgason 1959, 1990, 2006 and V.Semjanistyi 1961.
- The case $\rho=0,|\alpha|=1$ of the above theorem follows from Radon's reconstruction by means of the stereographic projection.

References

- Hermann Minkowski 1905 stated uniqueness of an even functions on S^{2} with given big circle integrals. For $n=2, \rho=0, \alpha=0$, The analytic reconstruction of an even function is due to Paul Funk's 1913 (student of David Hilbert).
- Funk's result and his method encouraged Johann Radon 1917 for his famous reconstruction in the flat plane.
- Generalizations for higher dimensions: S.Helgason 1959, 1990, 2006 and V.Semjanistyi 1961.
- The case $\rho=0,|\alpha|=1$ of the above theorem follows from Radon's reconstruction by means of the stereographic projection.
- Y.Salman 2016 obtained the particular case for $n=2, \rho=0$, $|\alpha|<1$. This result was also published by M.Quellmalz 2017.

References

- Hermann Minkowski 1905 stated uniqueness of an even functions on S^{2} with given big circle integrals. For $n=2, \rho=0, \alpha=0$, The analytic reconstruction of an even function is due to Paul Funk's 1913 (student of David Hilbert).
- Funk's result and his method encouraged Johann Radon 1917 for his famous reconstruction in the flat plane.
- Generalizations for higher dimensions: S.Helgason 1959, 1990, 2006 and V.Semjanistyi 1961.
- The case $\rho=0,|\alpha|=1$ of the above theorem follows from Radon's reconstruction by means of the stereographic projection.
- Y.Salman 2016 obtained the particular case for $n=2, \rho=0$, $|\alpha|<1$. This result was also published by M.Quellmalz 2017.
- The reconstruction from spherical integrals (8) on S^{n} was stated in V.P. 2016 for arbitrary $n, 0 \leq \rho<1,|\alpha| \leq 1$.
- Step 3. By (i) formula (9) can be applied to $\Gamma(q, \theta)$ for $\alpha=0$, $\rho=\left(1+\lambda^{2}\right)^{-1 / 2}$ which provides the reconstruction of $g(q, \xi)=X f(q, \xi)$ for any $q \in Q$ and all ξ.
- Step 3. By (i) formula (9) can be applied to $\Gamma(q, \theta)$ for $\alpha=0$, $\rho=\left(1+\lambda^{2}\right)^{-1 / 2}$ which provides the reconstruction of $g(q, \xi)=X f(q, \xi)$ for any $q \in Q$ and all ξ.
- For any $x \in E^{3}$ and any unit orthogonal vectors ω, ξ, we have

$$
\left\langle\omega, \nabla_{\xi}\right\rangle^{2} f(q+r \xi)=r^{2}\left\langle\omega, \nabla_{q}\right\rangle^{2} f(q+r \xi)
$$

which yields (by Grangeat's method) for any p,

$$
\begin{gathered}
\int_{\langle\omega, \xi\rangle=0}\left\langle\omega, \nabla_{\xi}\right\rangle^{2} X f(q, \xi) \mathrm{d} \varphi=\int\left\langle\omega, \nabla_{\xi}\right\rangle^{2} \int_{0}^{\infty} f(q+r \xi) \frac{\mathrm{d} r}{r} \mathrm{~d} \varphi \\
=\iint_{0}^{\infty}\left\langle\omega, \nabla_{q}\right\rangle^{2} f(q+r \xi) r \mathrm{~d} r \mathrm{~d} \varphi=\frac{\partial^{2}}{\partial p^{2}} \int_{\langle\omega, q\rangle=p} f(q) \mathrm{d} S
\end{gathered}
$$

- Step 3. By (i) formula (9) can be applied to $\Gamma(q, \theta)$ for $\alpha=0$, $\rho=\left(1+\lambda^{2}\right)^{-1 / 2}$ which provides the reconstruction of $g(q, \xi)=X f(q, \xi)$ for any $q \in Q$ and all ξ.
- For any $x \in E^{3}$ and any unit orthogonal vectors ω, ξ, we have

$$
\left\langle\omega, \nabla_{\xi}\right\rangle^{2} f(q+r \xi)=r^{2}\left\langle\omega, \nabla_{q}\right\rangle^{2} f(q+r \xi)
$$

which yields (by Grangeat's method) for any p,

$$
\begin{gathered}
\int_{\langle\omega, \xi\rangle=0}\left\langle\omega, \nabla_{\xi}\right\rangle^{2} X f(q, \xi) \mathrm{d} \varphi=\int\left\langle\omega, \nabla_{\xi}\right\rangle^{2} \int_{0}^{\infty} f(q+r \xi) \frac{\mathrm{d} r}{r} \mathrm{~d} \varphi \\
=\iint_{0}^{\infty}\left\langle\omega, \nabla_{q}\right\rangle^{2} f(q+r \xi) r \mathrm{~d} r \mathrm{~d} \varphi=\frac{\partial^{2}}{\partial p^{2}} \int_{\langle\omega, q\rangle=p} f(q) \mathrm{d} S
\end{gathered}
$$

- where the left hand side can be calculated from $X f$.
- Step 4 By (ii) we can use the Lorentz-Radon formula for any $x \in \operatorname{supp} f$,

$$
\begin{aligned}
f(x) & =-\frac{1}{8 \pi^{2}} \int_{\omega \in \mathrm{S}^{2}} \frac{\partial^{2}}{\partial p^{2}} \int_{\langle\omega, q-x\rangle=0} f(q) \mathrm{d} q \mathrm{~d} \Omega \\
& =-\frac{1}{8 \pi^{2}} \int_{\omega \in \mathrm{S}^{2}} \int_{\langle\omega, \tilde{\zeta}\rangle=0}\left\langle\omega, \nabla_{\xi}\right\rangle^{2} X f(q(\omega), \tilde{\xi}) \mathrm{d} \varphi \mathrm{~d} \Omega
\end{aligned}
$$

if we choose for any $\omega \in S^{2}$, a point $q=q(\omega) \in Q$ such that $\langle q(\omega)-x, \omega\rangle=0$.

- Step 4 By (ii) we can use the Lorentz-Radon formula for any $x \in \operatorname{supp} f$,

$$
\begin{aligned}
f(x) & =-\frac{1}{8 \pi^{2}} \int_{\omega \in \mathrm{S}^{2}} \frac{\partial^{2}}{\partial p^{2}} \int_{\langle\omega, q-x\rangle=0} f(q) \mathrm{d} q \mathrm{~d} \Omega \\
& =-\frac{1}{8 \pi^{2}} \int_{\omega \in \mathrm{S}^{2}} \int_{\langle\omega, \xi\rangle=0}\left\langle\omega, \nabla_{\zeta}\right\rangle^{2} X f(q(\omega), \xi) \mathrm{d} \varphi \mathrm{~d} \Omega
\end{aligned}
$$

if we choose for any $\omega \in \mathrm{S}^{2}$, a point $q=q(\omega) \in Q$ such that $\langle q(\omega)-x, \omega\rangle=0$.

- This completes the reconstruction of f.

Other reconstructions from the singular cone beam transform

- Let $\Gamma=\{y=y(s)\}$ be a closed C^{2} smooth curve.

Other reconstructions from the singular cone beam transform

- Let $\Gamma=\{y=y(s)\}$ be a closed C^{2} smooth curve.
- Let $\sigma: \Gamma \times \mathrm{S}^{2} \rightarrow \mathbb{R} \times \mathrm{S}^{2} ; \sigma(y, \xi)=(\langle y, \xi\rangle, \xi)$. All critical points of the map σ are supposed of Morse type.

Other reconstructions from the singular cone beam transform

- Let $\Gamma=\{y=y(s)\}$ be a closed C^{2} smooth curve.
- Let $\sigma: \Gamma \times \mathrm{S}^{2} \rightarrow \mathbb{R} \times \mathrm{S}^{2} ; \sigma(y, \xi)=(\langle y, \xi\rangle, \xi)$. All critical points of the map σ are supposed of Morse type.
- Let $\varepsilon: \Gamma \times \mathrm{S}^{2} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\sum_{y ;\langle y, \xi\rangle=p}\left\langle y^{\prime}, \xi\right\rangle \varepsilon(y, \xi)=1, \quad(p, \xi) \in \operatorname{Im} \sigma .
$$

Other reconstructions from the singular cone beam transform

- Let $\Gamma=\{y=y(s)\}$ be a closed C^{2} smooth curve.
- Let $\sigma: \Gamma \times \mathrm{S}^{2} \rightarrow \mathbb{R} \times \mathrm{S}^{2} ; \sigma(y, \xi)=(\langle y, \xi\rangle, \xi)$. All critical points of the map σ are supposed of Morse type.
- Let $\varepsilon: \Gamma \times \mathrm{S}^{2} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\sum_{y ;\langle y, \tilde{\zeta}\rangle=p}\left\langle y^{\prime}, \xi\right\rangle \varepsilon(y, \xi)=1,(p, \xi) \in \operatorname{Im} \sigma
$$

- Theorem For any function $f \in C_{0}^{2}\left(E^{3}\right)$ and any $x \in \operatorname{supp} f \backslash \Gamma$ such that any plane P through x meets Γ, the equation holds

$$
\begin{aligned}
f(x)= & -\frac{1}{32 \pi^{4}} \int_{y \in \Gamma} \int_{\langle y-x, \zeta\rangle=0} \partial_{s}^{2} \frac{\varepsilon(y, \xi)}{|y-x|} \mathrm{d} s \\
& \times \int_{\langle\xi, v\rangle=0}\left\langle\xi, \nabla_{v}\right\rangle^{2} \partial_{s} g(y, v) \mathrm{d} \theta \mathrm{~d} \varphi
\end{aligned}
$$

Some references

：Cree M J and Bones P J 1994 IEEE Trans．of Medical Imag． 13 398－407
Rasko R，Zeng G L and Gullberg G T 1998 Phys．Med．Biol． 43 887－894
回 Nguyen M K and Truong T T 2002 Inverse Probl． 18 265－277
Eskin G 2004 Inverse Probl． 20 1497－1516
回 Smith B 2005 J．Opt．Soc．Am．A 22 445－459
围 Nguyen M K，Truong T T and Grangeat P 2005 J．Phys．A：Math． Gen． 38 8003－8015
固 Maxim V，Frandes M and Prost R 2009 Inverse Problems 25095001
固 Florescu L，Markel V A and Schotland J C 2011 Inverse Prob． 27 025002
囯 Truong T T and Nguyen M K 2011 J．Phys．A：Math．Theor． 44

用 Ambartsoumian G 2012 Comput．Math．Appl． 64 260－5
國 Katsevich A and Krylov R 2013 Inverse Probl． 29075008
國 Maxim V 2014 IEEE Trans．Image Proc． 23 332－341
嗇 Haltmeier M 2014 Inverse Probl． 3003500
（ Gouia－Zarrad R 2014 Comput．Math．Appl．， 68 1016－1023．
固 Gouia－Zarrad R and Ambartsoumian G 2014 Inverse Probl． 30045007
固 Terzioglu F 201531115010
固 Jung Ch－Y and Moon S 2016 SIAM J．Imaging Sci． 9 520－536
回 Moon S 2016 SIAM J Math．Anal． 48 1833－1847
Palamodov V 2016 CRC Press
國 Salman Y 2016 Anal．Math．Phys．6，no．1，43－58．
围 Quellmalz M 2017 Inverse Probl． 33035016

