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Consider the equation

θ∂xψ + A(x , θ)ψ = 0, x ∈ R
d , θ ∈ S

d−1, (1)

where A is a sufficiently regular function on R
d × S

d−1 with
sufficient decay as |x | → ∞.
We assume that A and ψ take values in Mn,n that is in n× n

complex matrices.
Consider the ”scattering” matrix S for equation (1):

S(x , θ) = lim
s→+∞

ψ+(x + sθ, θ), (x , θ) ∈ TS
d−1, (2)

where
TS

d−1 = {(x , θ) ∈ R
d × S

d−1 : xθ = 0} (3)

and ψ+(x , θ) is the solution of (1) such that

lim
s→−∞

ψ+(x + sθ, θ) = Id , x ∈ R
d , θ ∈ S

d−1. (4)
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We interpret TS
d−1 as the set of all rays in R

d . As a ray γ we
understand a straight line with fixed orientation.
If γ = (x , θ) ∈ TS

d−1, then γ = {y ∈ R
d : y = x + tθ, t ∈ R}

(up to orientation) and θ gives the orientation of γ.

We say that S is the non-abelian Radon transform along oriented
straight lines (or the non-abelian X-ray transform) of A.
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We consider the following inverse problem:
Problem 1. Given S , find A.
Note that S does not determine A uniquely, in general. One of the
reasons is that S is a function on TS

d−1, whereas A is a function
on R

d × S
d−1 and

dimR
d × S

d−1 = 2d − 1 > dimTS
d−1 = 2d − 2.

In particular, for Problem 1 there are gauge type non-uniqueness,
non-uniqueness related with solitons,
and Boman type non-uniqueness.
Equation (1), the ”scattering” matrix S and Problem 1 arise, for
example, in the following domains:
I. Tomographies:
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A. The classical X-ray transmission tomography:

n = 1, A(x , θ) = a(x), x ∈ R
d , θ ∈ S

d−1, (5a)

S(γ) = exp[−Pa(γ)], Pa(γ) =

∫

R

a(x+sθ)ds, γ = (x , θ) ∈ TS
d−1,

(5b)
where a is the X-ray attenuation coefficient of the medium, P is
the classical Radon transformation along straight lines (classical
ray transformation), S(γ) describes the X-ray photograph along γ.
In this case, for d ≥ 2,

S
∣

∣

TS1(Y )
uniquely determines a

∣

∣

Y
, (6)

where Y is an arbitrary two-dimensional plane in R
d , TS1(Y ) is

the set of all oriented straight lines in Y . In addition, this
determination can be implemented via the Radon inversion formula
for P in dimension d = 2.
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B. Single-photon emission computed tomography (SPECT):
In SPECT one considers a body containing radioactive isotopes
emitting photons. The emission data p in SPECT consist in the
radiation measured outside the body by a family of detectors
during some fixed time. The basic problem of SPECT consists in
finding the distribution f of these isotopes in the body from the
emission data p and some a priori information concerning the
body. Usually this a priori information consists in the photon
attenuation coefficient a in the points of body, where this
coefficient is found in advance by the methods of the classical
X-ray transmission tomography.
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Problem 1 arises as a problem of SPECT in the framework of the
following reduction [R.Novikov 2002 a]: n = 2,

A11 = a(x), A12 = f (x), A21 = 0, A22 = 0, x ∈ R
d , (7a)

S11 = exp [−P0a], S12 = −Paf , S21 = 0, S22 = 1, (7b)

Paf (γ) =

∫

R

exp[−Da(x + sθ, θ)]f (x + sθ)ds, γ = (x , θ) ∈ TS
d−1,

(8)

Da(x , θ) =

+∞
∫

0

a(x + sθ)ds, x ∈ R
d , θ ∈ S

d−1,

where f ≥ 0 is the density of radioactive isotopes, a ≥ 0 is the
photon attenuation coefficient of the medium, Pa is the attenuated
Radon transformation (along oriented straight lines), Paf describes
the expected emission data.
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In this case (as well as for the case of the classical X-ray
transmission tomography), for d ≥ 2,

S
∣

∣

TS1(Y )
uniquely determines a

∣

∣

Y
and f

∣

∣

Y
, (9)

where Y is an arbitrary two-dimensional plane in R
d , TS1(Y ) is

the set of all oriented straight lines in Y . In addition, this
determination can be implemented via the following inversion
formula [R.Novikov 2002b]:

f = P−1
a g , where g = Paf ,
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P−1
a g(x) =

1

4π

∫

S

θ⊥∂x
(

exp [−Da(x ,−θ)]g̃θ(θ⊥x)
)

dθ, (10a)

g̃θ(s) = exp (Aθ(s)) cos (Bθ(s))H(exp (Aθ) cos (Bθ)gθ)(s)+

exp (Aθ(s)) sin (Bθ(s))H(exp (Aθ) sin (Bθ)gθ)(s), (10b)

Aθ(s) = (1/2)P0a(sθ
⊥, θ), Bθ(s) = HAθ(s), gθ(s) = g(sθ⊥, θ),

(10c)

Hu(s) =
1

π
p.v .

∫

R

u(t)

s − t
dt,

x ∈ R
2, θ⊥ = (−θ2, θ1) for θ = (θ1, θ2) ∈ S

1, s ∈ R.
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C. Tomographies related with weighted Radon transforms:
We consider the weighted Radon transformations PW defined by
the formula

PW f (x , θ) =

∫

R

W (x + sθ, θ)f (x + sθ)ds, (x , θ) ∈ TS
d−1, (11)

where W = W (x , θ) is the weight, f = f (x) is a test function. We
assume that

W ∈ C (Rd × S
d−1),

W = W̄ , 0 < c0 ≤ W ≤ c1, (12)

lim
s→±∞

W (x + sθ, θ) = w±(x , θ), (x , θ) ∈ TS
d−1.
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If W = 1, then PW is the classical Radon transformation along
straight lines.
If

W (x , θ) = exp
(

−
+∞
∫

0

a(x + sθ)ds
)

,

then PW is the classical attenuated Radon transformation (along
oriented straight lines) with the attenuation coefficient a(x).
Transformations PW with some other weights also arise in
applications.
For example, such transformations arise also in fluorescence
tomography, optical tomography, positron emission tomography.
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The transforms PW f arise in the framework of the following
reduction of the non-abelian Radon transform S : n = 2,

A11 = θ∂x ln W (x , θ), A12 = f (x), A21 = 0, A22 = 0, (13a)

S11 =
w−

w+
, S12 = − 1

w+
PW f , S21 = 0, S22 = 1. (13b)

For more information on the theory and applications of the
transformations PW ; see, for example, [R.Novikov 2014] and
[J.Ilmavirta 2016].
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D. Neutron polarization tomography (NPT):
In NPT one considers a medium with spatially varying magnetic
field.
The polarization data consist in changes of the polarization (spin)
between incoming and outcoming neutrons.
The basic problem of NPT consists in finding the magnetic field
from the polarization data.
See, e.g., [M.Dawson, I.Manke, N.Kardjilov, A.Hilger, M.Strobl,
J.Banhart 2009], [W.Lionheart, N. Desai, S.Schmidt 2015].
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Problem 1 arises as a problem of NPT in the framework of the
following reduction: n = 3,

A11 = A22 = A33 = 0, (14)

A12 = −A21 = −gB3(x), A13 = −A31 = gB2(x),

A23 = −A32 = −gB1(x),

where B = (B1,B2,B3) is the magnetic field, g is the
gyromagnetic ratio of the neutron.
In this case S on TS2 uniquely determines B on R

3 as a corollary
of Theorem 6.1 of [R.Novikov 2002a]. In addition, the related 3D -
reconstruction is based on local 2D - reconstructions based on
solving Riemann conjugation problems (going back to [S.Manakov,
V.Zakharov 1981]) and on the layer by layer reconstruction
approach. The final 3D uniqueness and reconstruction results are
global.
For the related 2D global uniqueness see [G.Eskin 2004].
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E. Electromagnetic polarization tomography (EPT):
In EPT one considers a medium with zero conductivity, unit
magnetic permeability, and small anisotropic perturbation of some
known (for example, uniform) dielectric permeability. The
polarization data consist in changes of the polarization between
incoming and outcoming monochromatic electromagnetic waves.
The basic problem of EPT consists in finding the anisotropic
perturbation of the dielectric permeability from the polarization
data.
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Problem 1 arises as a problem of EPT (with uniform background
dielectric permeability) in the framework of the following reduction
(see [V.Sharafutdinov 1994], [R.Novikov, V.Sharafutdinov 2007]):
n = 3,

A(x , θ) = −πθf (x)πθ, x ∈ R
d , θ ∈ S

d−1, (15)

where f is M3,3-valued function describing the anisotropic
perturbation of the dielectric permeability tensor; by some physical
arguments f must be skew-Hermition, fij = −f̄ji ,

πθ ∈ M3,3, πθ,ij = δij − θiθj ;

S for equation (1) with A given by (15) describes the polarization
data, but, in general, it can not be given explicitly already.
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In this case S on TS
2 does not determine f on R

3 uniquely, in
general, [R.Novikov, V.Sharafutdinov 2007] (in spite of the fact
that dimTS

2 = 4 > dimR
3 = 3), in particular, if

f11 = f22 = f33 ≡ 0, (16)

f12(x) = ∂u(x)/∂x3, f13(x) = −∂u(x)/∂x2, f23(x) = ∂u(x)/∂x1,

f21 = −f12, f31 = −f13, f32 = −f23,

where u is a real smooth compactly supported function, then
S ≡ Id on TS

2.
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On the other hand, a very natural additional physical assumption is
that f is an imaginary-valued symmetric matrix: f = −f̄ , fij = fji .
According to [R.Novikov 2009], in this case

S on Λ uniquely determines f , at least, if f is sufficiently small,
(17)

where Λ is an appropriate 3d subset of TS
2, for example,

Λ = ∪6
i=1Γωi , Γωi = {γ = (x , θ) ∈ TS

2 : θωi = 0}, (18)

ω1 = e1, ω2 = e2, ω3 = e3,

ω4 = (e1 + e2)/
√
2, ω5 = (e1 + e3)/

√
2, ω6 = (e2 + e3)/

√
2,

where e1, e2, e3 is the basis in R
3. In addition, this determination is

based on a convergent iterative reconstruction algorithm.
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II. Differential geometry:

A(x , θ) =

d
∑

j=1

θjaj(x), x ∈ R
d , θ = (θ1, . . . , θd ) ∈ S

d−1, (19)

where aj are sufficiently regular Mn,n-valued functions on R
d with

sufficient decay as |x | → ∞. In this case equation (1) describes
the parallel transport of the fibre in the trivial vector bundle with
the base R

d and the fibre C
n and with the connection

a = (a1, . . . , ad ) along the Euclidean geodesics in R
d ; in addition,

S(γ) for fixed γ ∈ TS
d−1 is the operator of this parallel transport

along γ (from −∞ to +∞ on γ).
In this case Problem 1 is an inverse connection problem. The
determination in this problem is considered modulo gauge
transformations.
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The results of [R.Novikov 2002 a] on this problem include:
global uniqueness and reconstruction results in dimension d ≥ 3
(based on local 2D - reconstructions based on solving Riemann
conjugation problems and on the layer by layer reconstruction
approach);
counter examples to the global uniqueness in dimension d = 2
(using Ward’s solitons for an integrable chiral model in 2+1
dimensions).
In connection with the inverse connection problem along
non-Euclidean geodesics we refer to [V. Sharafutdinov 2000],
[G. Paternain 2013], [C. Guillarmou, G. Paternain, M. Salo, G.
Uhlmann 2016] and references therein.
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III. Theory of the Yang-Mills fields:
A. The aforementioned inverse connection problem arises, in
particular, in the framework of studies on inverse problems for the
Schrödinger equation

d
∑

j=1

−
( ∂

∂xj
+ aj(x)

)2
ψ + v(x)ψ = Eψ (20)

in the Yang-Mills field a = (a1, . . . , ad ) at E → +∞ (see
[R.Novikov 2002 a].
B. Integration of the self-dual Yang-Mills equations by the inverse
scattering method (see [S.Manakov, V.Zakharov 1981], [R.Ward
1988].
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Actually, Problem 1 for

A(x , θ) = a0(x)+θ1a1(x)+θ2a2(x), x = (x1, x2) ∈ R
2, θ = (θ1, θ2) ∈ S

1,
(21)

with Mn,n-valued a0, a1, a2 (and some linear relation between a1
and a2) was considered for the first time in [S.Manakov,
V.Zakharov 1981] in the framework of integration by inverse
scattering method of the evolution equation

(χ−1χt)t = (χ−1χz)z̄ , (22)

where t, z , z̄ in (22) denote partial derivatives with respect to t,
z = x1 + ix2, z̄ = x1 − ix2 and where χ is SU(n)-valued function.
Equation (22) is a (2+1)-dimensional reduction of the self-duel
Yang-Mills equations in 2+2 dimensions.
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