Wave equation imaging by the Kaczmarz method

Frank Natterer Department of Mathematics and Computer Science University of Münster, Germany

Kaczmarz' method for linear problems

 $R_s f = g_s, s = 1, \dots, p$ R_s linear bounded operators $H \to H_s$, H, H_s Hilbert spaces.

Update:

$$f \leftarrow f - \alpha R_s^* C_s^{-1} (R_s f - g_s), s = 1, \dots, p$$

Convergence:

$$0 < \alpha < 2, \ C_s \ge R_s R_s^* > 0$$

The model problem

$$\frac{\partial^2 u}{\partial t^2}(x,t) = c^2(x) \left(\Delta u(x,t) + q(t)p(x-s)\right), \ 0 < t < T,$$
$$u = 0, \ t < 0,$$

 $g_s(x',t) = u(x',0,t) = (R_s(f))(x',t)$ seismogram for source s, $c^2(x) = c_0^2/(1+f(x)).$

 X_2

Kaczmarz' method for nonlinear problems (consecutive time reversal)

Solve $R_s(f) = g_s$ for all sources *s*.

Update:

$$f \longleftarrow f - \alpha (R_s'(f))^* (R_s(f) - g_s)$$

Compute the adjoint by time reversal:

$$(R_{s}'(f))^{*}r)(x) = \int_{0}^{T} z(x,t) \frac{\partial^{2} u(x,t)}{\partial t^{2}} dt$$

$$\frac{\partial^2 z}{\partial t^2} = c^2(x)\Delta z \text{ for } x_2 > 0,$$
$$\frac{\partial z}{\partial x_2} = r \text{ on } x_2 = 0,$$
$$z = 0 \text{ for } t > T.$$

Kaczmarz' method for breast phantom, eight sources

Rays Kaczmarz' method for breast phantom, eight sources

I sweep 3 sweeps

Reconstruction in the presence of focal points

7.5 5.0 2.5 mm Luneberg lens

200 kHz wavelength 7.5 mm

Reconstruction in the presence of trapped rays

Condition for the initial approximation:

$$-\Delta u_0 - k^2 (1 + f_0) u_0 = \delta(x - s)$$

$$-\Delta u - k^2 (1 + f_0)u = -k^2 (f - f_0)u + \delta(x - s).$$

First step of iteration:

$$-\Delta u - k^2 (1 + f_0)u = -k^2 (f - f_0)u_0 + \delta(x - s).$$

Highly necessary condition for convergence:

 $|\operatorname{phase}(u) - \operatorname{phase}(u_0)| < \pi.$

WKB-approximation:

 $u \approx A \exp(ik\Phi)$ $u_0 \approx A_0 \exp(ik\Phi_0)$

$$\Phi \approx \Phi_0 + \frac{1}{2} \int (f - f_0) ds$$

phase(u) - phase(u_0) $\approx \frac{k}{2} \int (f - f_0) ds$

$$\left|\int (f - f_0)ds\right| < \frac{2\pi}{k} = \lambda$$

Palamodov 2010

Condition is plausible:

Source encoding

 $g_s(x_1,t) = u_s(x_1,0,t)$

is the usual seismogram for source s. Let w be a random vector, and let

$$g_w(x_1,t) = \sum_s w_s g_s(x_1,t).$$

 g_{α} is the value at $x_2 = 0$ of the solution for the source

$$q_w(x,t) = \sum_s w_s p(x-s)q(t).$$

Anastasio et al. 2014, Haber, Chung, Felix Herrmann 2012

◆ | ◆

Plane wave stacking

 $g_s(x_1,t) = u_s(x_1,0,t)$

is the usual seismogram for source s. Let $\alpha, |\alpha| \leq \pi/2$ be an angle, and let

$$g_lpha(x_1,t) = \int_{R^1} g_s(x_1,t-rac{s}{c}\sinlpha) ds.$$

 g_{α} is the value at $x_2 = 0$ of the solution

$$u_lpha(x,t) = \int_{R^1} u_s(x,t-rac{s}{c}\sinlpha) ds$$

that exhibits a wave front making an angle α with the surface $x_2 = 0$.

Schultz-Claerbout 1978, Jun Ji 2001, N. 2005

◆ | ◆

Coverage in Fourier domain

 $\hat{f}(\sigma + \rho, \kappa(\sigma) - \kappa(\rho)) \quad \hat{f}(\sigma + \rho, \kappa(\sigma) + \kappa(\rho))$

$$\kappa(\sigma) = \sqrt{k^2 - \sigma^2}$$

Easy case Nr. I: Clutter

5 sweeps of Kaczmarz

Diameter of dots 5 mm

Frequency range 50 to 150 kHz

Easy case Nr. 2: Source wavelet q is Gaussian peak.

6 sweeps

◆ | ◆

Suggestion of K. Richter, 1995

Mammography reflection imaging

3D scanner of **U-Systems**

Acquisition

SOMO • V[™] Automated Breast Ultrasound View with Somo.v[™]

3D Ultrasound Data Set

What can we achieve in reflection mammography? aperture A= 15cm

frequencies I5-500 kHz

wavelength 3 mm

depth 5 cm

tumor diameter 1.5 mm

stepsize 0.5 mm

Plane wave stacking in reflection mammography

frequencies 15-500 kHz, wavelength 3mm, tumor diameter 1.5 mm, stepsize 0.5 mm, 20 sources, depth 5 cm

Reconstruction with various methods

Hesse & Schmitz 2012

Kaczmarz

⁰² SA
^o synthetic
<sup>aperture focusing
</sup>

DAS (delay and sum)

Layered medium

 $f(x_1, x_2) = f(x_2).$

Born approximation, one source at $x_1 = 0$, $x_2 = 0$:

$$g_k(x) = (2\pi)^{-1/2} \int e^{-ix\xi} \hat{f}(-2\kappa(\xi)) d\xi, \ \kappa = \sqrt{k^2 - \xi^2}.$$

Finite aperture: Data available for $|x| \leq A$ only.

All we can determine: $\int \delta_A(\eta - \xi) \hat{f}(-2\kappa(\xi)d\xi, \ \delta_A(\xi) = \frac{A}{\pi}sinc(A\xi).$

Determine \hat{f} from

peaks in η , bandwidth A

bandwidth $2z|\kappa'(\xi)| = 2z|\xi|/\kappa(\xi)$

 $\hat{f}(-2\kappa(\xi))$ can be stably

determined for $A > 2z|\xi|/\kappa(\xi)$

i.e.
$$\frac{2k}{\sqrt{1+A^2/4z^2}} < 2\kappa < 2k.$$

Sirgue & Pratt 2004

for line object at depth z:

$$f(x) = \delta(x - z), \ \hat{f}(\xi) \sim e^{-iz\xi},$$
$$\hat{f}(-2\kappa(\xi)) \sim e^{-2iz\kappa(\xi)} \text{ for } |\xi| < k.$$

Kaczmarz' method, frequencies 5-25 Hz

Falling weight deflectometer (FWD)

