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Linear Inverse Problem

• Solve
K x = y

in discrete setting

• x ∈ Rp = vector of coefficients describing the unknown object

• y ∈ Rn = vector of (noisy) data

• K = linear operator (n×p matrix) modelling the link between the
two



Regularization

Noisy data→ solve approximately by minimizing contrast
(discrepancy) function, e.g. ‖K x− y‖2

2

Ill-conditioning→ regularize by adding constraints/penalties on the
unknown vector x e.g.

• on its squared L2-norm ‖x‖2
2 = ∑i |x i |2

(classical quadratic regularization)

• on its L1-norm ‖x‖1 = ∑i |x i |
(sparsity-enforcing or “lasso” regularization, favoring the recovery
of sparse solutions, i.e. the presence of many zero components
in x)

• on a linear combination of both ‖x‖1 and ‖x‖2
2 norms

(“elastic-net” regularization)

• plus here positivity constraints (hold true in many applications)



Positivity and multiplicative iterative algorithms

• Poisson noise→ minimize (log-likelihood) cost function subject to
x ≥ 0 (assuming K ≥ 0 and y ≥ 0)

F(x) = KL(y ,K x)≡
n

∑
i=1

[
y i ln

(
y i

(K x)i

)
− y i +(K x)i

]
(Kullback-Leibler – generalized – divergence)

• Richardson (1972) - Lucy (1974) (an astronomer’s favorite) =
EM(ML) in medical imaging

• Algorithm: x(k+1) =
x(k)

K T 1
◦ K T y

K x(k)
(k = 0,1, . . .)

(using the Hadamard (entrywise) product ◦ and division;
1 is a vector of ones)

• Positivity automatically preserved if x(0) > 0

• Unregularized→ semi-convergence→ usually early stopping

• Can be easily derived through separable surrogates



Surrogating

Figure : The function in red and his surrogate in green



Surrogating

• Surrogate cost function G(x ;a) for F(x):

G(x ;a)≥ F(x) and G(a;a) = F(a)

for all x ,a

• MM-algorithm (Majorization-Minimization):

x(k+1) = argmin
x

G(x ;x(k))

• Monotonic decrease of the cost function is then ensured:

F(x(k+1))≤ F(x(k))

(Lange, Hunter and Yang 2000)



Surrogate for Kullback-Leibler

Cost function (K ≥ 0 and y ≥ 0)

F(x) =
n

∑
i=1

[
y i ln

(
y i

(K x)i

)
− y i +(K x)i

]
Surrogate cost function (for x ≥ 0)

G(x ;a) =
n

∑
i=1

[
y i lny i − y i +(K x)i +

− y i

(K a)i

p

∑
j=1

K i,jaj ln

(
x j

aj
(K a)i

)]

NB. This surrogate is separable, i.e. it can be written as a sum of
terms, where each term depends only on a single unknown
component x j .



Positivity and multiplicative iterative algorithms

• Gaussian noise→ minimize (log-likelihood) cost function subject
to x ≥ 0

F(x) =
1
2
‖K x− y‖2

2

assuming K ≥ 0 and y ≥ 0

• ISRA (Image Space Reconstruction Algorithm)
(Daube-Witherspoon and Muehllehner 1986; De Pierro 1987)

• Iterative updates

x(k+1) = x(k) ◦ K T y

K T K x(k)

• Positivity automatically preserved if x(0) > 0

• Unregularized→ semi-convergence→ usually early stopping

• Easily derived through separable surrogates



Surrogate for Least Squares

Cost function (K ≥ 0 and y ≥ 0)

F(x) =
1
2
‖K x− y‖2

2

Surrogate cost function (for x ≥ 0)

G(x ;a) =
1
2

n

∑
i=1

1
(K a)i

p

∑
j=1

K i,jaj

[
y i −

x j

aj
(K a)i

]2

NB. This surrogate is separable, i.e. it can be written as a sum of
terms, where each term depends only on a single unknown
component x j



Blind Inverse Imaging

• In many instances, the operator is unknown (“blind”) or only
partially known (“myopic” imaging/deconvolution)

• The resulting functional is convex w.r.t. x or K separately but is
not jointly convex→ possibility of local minima

• Usual strategy: alternate minimization on x (with K fixed)
and K (with x fixed)

• The problem can be easily generalized to include multiple
inputs/unknowns (x becomes a p×m matrix X ) and multiple
outputs/measurements (y becomes a n×m matrix Y ) e.g. for
Hyperspectral Imaging

−→ solve K X = Y



Special case: Blind Deconvolution

• When the imaging operator K is translation-invariant, the problem
is also referred to as “Blind Deconvolution”

• Alternating minimization approaches using (regularized)
least-squares (Ayers and Dainty 1988; You and Kaveh 1996;
Chan and Wong 1998, 2000) or Richardson-Lucy (Fish,
Brinicombe, Pike and Walker 1996)

• Bayesian approaches are also available

• An interesting non-iterative and nonlinear inversion method has
been proposed by Justen and Ramlau (2006) with a uniqueness
result. Unfortunately, their solution has been shown to be
unrealistic from a physical point of view by Carasso (2009)



Blind Inverse Imaging, Positivity and NMF

• Blind imaging is difficult→ use as much a priori information and
constraints as you can

• In particular, positivity constraints have proved very powerful
when available, e.g. in incoherent imaging as for astronomical
images

• The special case where all elements of K , X (and Y ) are
nonnegative (K ≥ 0, X ≥ 0) is also referred to as
“Nonnegative Matrix Factorization” (NMF)

• There is a lot of recent activity on NMF, as an alternative to
SVD/PCA for dimension reduction

• Alternating (ISRA or RL) multiplicative algorithms have been
popularized by Lee and Seung (1999, 2000)
See also Donoho and Stodden (2004)



Our goal

• Develop a general and versatile framework for

• blind deconvolution/inverse imaging with positivity,

• equivalently for Nonnegative Matrix Factorization,

• with convergence results to control not only the decay of the cost
function but also the convergence of the iterates,

• with algorithms simple to implement

• and reasonably fast...



Applications

We will consider

• Blind deconvolution with positivity
(from single or multiple images)

• Hyperspectral Imaging

• Dynamic Positron Emission Tomography (PET)

NB. There are many other applications of NMF



Regularized least-squares (Gaussian noise)

• Minimize the cost function, for K , X nonnegative (assuming Y
nonnegative too),

F(K ,X) =
1
2
‖Y −K X‖2

F +
µ
2
‖K‖2

F +λ‖X‖1 +
ν

2
‖X‖2

F

where ‖ · ‖2
F denotes the Frobenius norm ‖K‖2

F = ∑i,j K 2
i,j

• The minimization can be done column by column on X and line
by line on K



Regularized least-squares (Gaussian noise)

• Alternating multiplicative algorithm
(1p×m is a p×m matrix of ones)

K (k+1) = K (k) ◦ Y (X (k))T

K (k)X (k)(X (k))T +µK (k)

X (k+1) = X (k) ◦ (K (k+1))T Y

(K (k+1))T K (k+1)X (k)+νX (k)+λ1p×m

• to be initialized with arbitrary but strictly positive K (0) and X (0)

• Can be derived through surrogates→ provides a monotonic
decrease of the cost function at each iteration

• Special cases:
• a blind algorithm proposed by Hoyer (2002, 2004) for
µ = 0,ν = 0
• ISRA for K fixed and λ = µ = ν = 0



Regularized least-squares (Gaussian noise)

• Assume µ and either ν or λ are strictly positive and Y has at least
one strictly positive element in each row and each column

• Monotonicity is strict iff (K (k+1),X (k+1)) 6= (K (k),X (k))

• The sequence F(K (k),X (k)) converges

• Asymptotic regularity holds: ∀i, j
limk→+∞

(
K (k+1)

i,j −K (k)
i,j

)
= 0 ; limk→+∞

(
X (k+1)

i,j −X (k)
i,j

)
= 0

• ⇒ the set of accumulation points of the sequence of iterates
(K (k),X (k)) is compact and connected

• If this set is finite, the iterates (K (k),X (k)) converge to a
stationary point (K ∗,X ∗) (satisfying the first-order KKT
conditions)



Some recent related (methodological) work

(with convergence results, possibly positivity constraints)

• Algorithm based on the SGP algorithm by Bonettini, Zanella,
Zanni (2009) and inexact block coordinate descent (Bonettini
2011): Prato, La Camera, Bonettini, Bertero (2013)
For a space-variant PSF, see also Ben Hadj, Blanc-Féraud and
Aubert (2012)

• Proximal Alternating Minimization and Projection Methods for
Nonconvex Problems
(Attouch, Bolte, Redont, Soubeyran 2010; Bolte, Combettes and
Pesquet 2010; Bolte, Sabach and Teboulle 2013)

• Underapproximations for Sparse Nonnegative Matrix
Factorization
(Gillis and Glineur 2010)



Application of NMF to Blind Deconvolution

• X : 256×256 positive image

• K : Convolution with the Airy function (circular low-pass filter)

= ∗

Y = K X



Application (Gaussian noise): no noise added

Figure : K (0) Unif, X (0) = Blurred Image; µ = 0, λ = 0, ν = 0, 1000 it



Application (Gaussian noise): 2.5% noise added

Figure : K (0) Gaussian, X (0) = Noisy Image; µ = 2.25 ·108, λ = 0.03, ν = 0.008;
200 it



Regularized Kullback-Leibler (Poisson noise)

• Minimize the cost function, for K , X nonnegative (assuming Y
nonnegative too),

F(K ,X) = KL(Y ,K X)+
µ
2
‖K‖2

F +λ‖X‖1 +
ν

2
‖X‖2

F

with

KL(Y ,K X) =
n

∑
i=1

m

∑
j=1

[
(Y )i,j ln

(
(Y )i,j

(K X)i,j

)
− (Y )i,j +(K X)i,j

]



Regularized Kullback-Leibler (Poisson noise)

• Alternating multiplicative algorithm

K (k+1) =
2A(k)

B(k)+
√

B(k) ◦B(k)+4µA(k)

where

A(k) = K (k) ◦ Y

K (k)X (k)
(X (k))T

B(k) = 1n×m (X (k))T

(1n×m is a n×m matrix of ones)



Regularized Kullback-Leibler (Poisson noise)

X (k+1) =
2C(k+1)

D(k+1)+
√

D(k+1) ◦D(k+1)+4νC(k+1)

where

C(k+1) = X (k) ◦ (K (k+1))T Y

K (k+1)X (k)

D(k+1) = λ1p×m +(K (k+1))T 1n×m

to be initialized with arbitrary but strictly positive K (0) and X (0)



Regularized Kullback-Leibler (Poisson noise)

• Can be derived through surrogates→ provides a monotonic
decrease of the cost function at each iteration

• Special case for λ = µ = ν = 0: the blind algorithm proposed by
Lee and Seung (1999) which reduces to the EM/Richardson-Lucy
algorithm for K fixed

• Properties as above for the least-squares case



Normalization constraint

• At each iteration, one can enforce a normalization constraint on
the PSF (line of K ), imposing that its values sum to one

• To do this a Lagrange multiplier is introduced and its value is
determined by means of a few Newton-Raphson iterations

• The convergence results can be adapted to cope with this case



Application : 1% (equiv. rmse) Poisson Noise; PSF normalized

Noisy Image Original Reconstructed

Figure : K (0) = Unif, X (0) = Noisy Image, µ = 109, λ = 10−7, ν = 6 ·10−8,
2000 it in 12m37s



Extension to TV regularization

• Total Variation: use discrete differentiable approximation

‖X‖TV = ∑
i,j

√
ε2 +(X i+1,j −X i,j)2 +(X i,j+1−X i,j)2

for 2D images

• Use penalty λ‖X‖TV instead of λ‖X‖1

• Use separable surrogate proposed by Defrise, Vanhove and Liu
(2011) to derive explicit update rules both for Gaussian and
Poisson noise



Application KL-TV: 1% (equiv. rmse) Poisson Noise; PSF normalized

Noisy Image Original Reconstructed

Figure : K (0) = Unif, X (0) = Noisy Image, µ = 1.5 ·106, λ = 0.0485,
ε = 6 ·10−7, 200 it in 1m46s



Application KL-TV: 2.5% (equiv. rmse) Poisson Noise; normalized PSF

Noisy Image Original Reconstructed

Figure : K (0) = Unif, X (0) = Noisy Image, µ = 107, λ = 0.03, ε =
√

10, 2000
it in 54m30s



Application to AO astronomical images

• Test images used by Prato, La Camera, Bonettini and Bertero
(2013) for post-adaptive-optics astronomical imaging (PSF with
Strehl Ratio 0.40), with a restoration method based on the SGP
algorithm by Bonettini, Zanella, Zanni (2009) and inexact block
coordinate descent (Bonettini 2011)

• Necessity to incorporate a background term in the cost function
(KX → KX +B) and in the KL restoration algorithm

• Quality of restorations comparable to those of Prato, La Camera,
Bonettini and Bertero (2013)



Planetary Nebula NGC 7027

Blurred and noisy image Original Psf Original Image

Reconstructed Psf Reconstructed Image

Figure :
Reconstruction with µ = 106, λ = 6 ·10−8, ν = 10−9, uniform K (0), X (0) = Y ,

5500 it in 17min40s, RMSEK = 22.61%, RMSEX = 6.66%



Galaxy NGC 6946

Blurred and noisy image Original Psf Original Image

Reconstructed Psf Reconstructed Image

Figure :
Reconstruction with µ = 2.75 ·108, λ = 5 ·10−8, ν = 1.668 ·10−8, uniform K (0), X (0) = Y ,

5000 it in 15min45s, RMSEK = 14.24%, RMSEX = 22.83%



Crab Nebula NGC 1952

Blurred and noisy image Original Psf Original Image

Reconstructed Psf Reconstructed Image

Figure :
Reconstruction with µ = 7.4 ·107, λ = 2.5 ·10−8, ν = 1.5 ·10−8, uniform K (0), X (0) = Y ,

4000 it in 11min48s, RMSEK = 15.72%, RMSEX = 15.96%



Reconstruction from multiple images (same PSF)

Original Single Image Multiple (3) Images
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Reconstruction from multiple images (same PSF)

Original Galaxy Planetary Nebula Crab Nebula Multiple

Figure : Reconstructed PSF

Object µ λ ν Nb It. Time RMSEK RMSEX RMSEM

Plan. 106 10−8 10−9 5500 17m40s 0.23 0.06 0.05

Gal. 2.75 ·108 5 ·10−8 1.67 ·10−8 5000 15m45s 0.14 0.23 0.19

Crab 7.4 ·107 2.5 ·10−8 1.5 ·10−8 4000 11m48s 0.15 0.16 0.14

All 3 2.4 ·108 6.75 ·10−8 4.36 ·10−9 4000 21m27s 0.12

Table : Values used for the parameters and RMSE



Application of NMF to Hyperspectral Imaging

Example: Urban HYDICE HyperCube: 307×307×162
containing the images of an urban zone recorded for 162 different
wavelength/frequencies

• Factorize the Y : 3072×162 data matrix as Y = KX where K is a
3072×p (relative) abundances matrix of some basis elements to
be determined and X is a p×162 matrix containing the spectra
of those basis elements

• Penalized Kullback-Leibler divergence used as cost function

• The sum of the relative abundances is normalized to one



Hyperspectral Imaging

Dirt Grass Trees

Roofs Roads Metals

Figure :
Abundances with p = 6, µ = 10−10, λ = 0, ν = 1.1,

random K (0) and X (0), 1000 it in 1h19min12s



Hyperspectral Imaging

Dirt Grass Trees

Roofs Roads Metals

Figure : Spectra



Application of NMF to Dynamic PET

(work in progress with Michel Defrise)

18 F-FET PET/CT 

IV 18F-FET 
 

CT 
 

Static PET 
 

T0 
 

T10 
 

T45 
 

Pixels with FET-uptake ≥ 1.6 of normal 
brain are considered “tumor associated” 

 

Sum of all tumor associated pixels: 

Metabolic Active Volume (MAV in ml) 

 

 

Time	(min.)	

18 F-Fluoro-ethyl-tyrosine (18 F-FET) =  
artificial amino-acid for PET, crossing the Blood Brain Barrier 



Dynamic PET

Dynamic 18 F-FET PET/CT 

IV 18F-FET 
 

CT 
 

Dynamic PET 
 

T0 
 

T10 
 

T45 
 

Time	(min.)	

  

(slides	:	courtesy	by	Dr	Hendrik	Everaert)	
NB.	Large	literature	on	NNMF	and	in	parBcular	for	dynamic	PET,	see	e.g.	
Tichy,	Smidl,	2014	InternaBonal	Conference	on	BioMedical	Engineering	and	InformaBcs,	
Lee	et	al	(Seoul)	for	myocardial	H20	PET,	…	
	



Dynamic PET

PET scan data inversion is done time by time and then the 4D dataset
(nb voxels × nb of time frames) is factored through NMF, with cost
function:

• Least-squares discrepancy (Gaussian noise)

• Smoothness of the temporal activity curves (TAC)/factors:
quadratic penalty on a high-pass filtered version/differences

• Normalization of the temporal activity curves (TAC)/factors:
sum to one over time

• Sparsity-enforcing penalty (L1-norm) on the coefficients
(few factors active in each voxel)

• Spatial correlations: quadratic penalty on differences of
coefficients corresponding to neighbouring voxels



Dynamic PET

A	toy	problem	with	100	“voxels”,	20	8me	frames,	p=3	factors	
No	spa8al	connec8on	between	voxels	

2 4 6 8 10

0.025

0.05

0.075

0.1

0.125

0.15
The	p=3	8me	basis	func8ons	xαt		
with	the	symbols	at	the	T	chosen		
8me	samples.		

t	



Dynamic PET

The	“true”	coefficients	ki	α	are	selected	as	follows:	each	“voxel”	has	non-zero		
Coefficients	for	two	factors	randomly	selected	from	the	three	factors.	Given	two	random		
numbers	r1,	r2	uniformly	distributed	on	(0,1)	the	dominant	coefficient	is		
(0.5+max(r1,r2))	and	the	secondary	factor	modeling	a	weaker	contaminaJon	is		
min(r1,r2).	No	spaJal	correlaJon	is	modeled.		

Voxel	index	
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Dynamic PET

Toy	problem:	noise	free	simula2on.		µ =ν = 0, Niter =10000. xαt
(0) =1,  kit

(0) = 0.1+ rand(0,1)

The	dominant	factor																															is	iden2fied	correctly	for	all	voxels.		
	
The	mean	and	standard	devia2on	of	the	V=100	errors	on	the	coefficients	are		
Red	factor:	 	0.01	(0.0069)	
Blue	factor: 	-0.05	(0.074)	
Green	factor: 	0.041	(0.074)	
	
Rela2ve	RMSE	of	the	reconstructed	TAC	(all	2me	bins	and	all	voxels):	2.2	10-6	
Maximum	TAC	error/Maximum	TAC:	0.00002.		

αi
* = argmax

α
 kiα

The	es2mated	factors	(symbols)	
and	the	exact	ones	(full	line).	

t	
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Dynamic PET

µ =10,2λ = 0.015, Niter =10000. xαt
(0) =1,  kit

(0) = 0.1+ rand(0,1)

Despite	noise	and	the	important	factor	mixing,		the	dominant		
factor	is	iden4fied	correctly	for	99	of	the	100	voxels	(for	this	noise	realiza4on).	
The	mean	and	standard	devia4on	of	the	V=100	errors	on	the	coefficients	are		
Red	factor:	 	-0.007	(0.10)	
Blue	factor: 	-0.14	(0.21)	
Green	factor: 	-0.15	(0.17)	

The	es4mated	basis	factors	(symbols)	
and	the	exact	ones	(full	line).	

2 4 6 8 10
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0.05

0.075

0.1

0.125

0.15

0.175

Toy	problem:	noisy	simula4on.		



Dynamic PET: clinical data

Voxels	=	24037,	T	=	9	1me	frames,	we	select	A	=	3	factors.			
NNMF,	10000	itera1ons,	(µ=ν=0).	Ini1aliza1on:	all	factors	are	constant,	coefficients	are	random.	

Time	frame	

hα=1,thα=2,t
hα=3,t

Coefficient	on	factor	1	 Coefficient	on	factor	2	

Coefficient	on	factor	3	



Happy Anniversary to the Radon Transform



A selfie from the pre-selfie era...

... and an invitation to blind deconvolution!


